
Mastering Heterogeneous Behavioural Models

J. Christian Attiogbé(B)

LS2N - UMR CNRS 6004 - University of Nantes, Nantes, France
Christian.Attiogbe@univ-nantes.fr

Abstract. Heterogeneity is one important feature of complex systems,
leading to the complexity of their construction and analysis. Moving the
heterogeneity at model level helps in mastering the difficulty of compos-
ing heterogeneous models which constitute a large system. We propose AQ1

a method made of an algebra and structure morphisms to deal with the
interaction of behavioural models, provided that they are compatible. We
prove that heterogeneous models can interact in a safe way, and therefore
complex heterogeneous systems can be built and analysed incrementally.
The Uppaal tool is targeted for experimentations.

Keywords: Behavioural models · Heterogeneous systems · Interaction

1 Introduction

Mastering the composition of heterogeneous models contributes to settle the
challenge of building and analyzing large systems. Models are used at different
abstraction levels and for different purposes. Data models capture the structure
of manipulated data, behavioural models often based on transition systems or
event systems help to predict and reason about the behaviour of the software to
be built. Other models such as timed models, security models, functional mod-
els are required according to the needs. A combination of these models is often
necessary. In this article we focus on behavioural models used to capture the
evolution and the interaction between processes of a more general heterogeneous
system which can combine various components. An example of an heterogeneous
system is an assembly of pieces of software and hardware communicating with
a distributed architecture (using smart objects, sensors, actuators, mechanical
parts driven by software). This kind of systems is spreading more and more.
However mastering their design, proving their correctness and maintaining these
systems are a challenge of first importance for the security of services and soft-
ware, and especially for reducing time to market of smart objects.

There are several works and proposals related to heterogeneous issues; they
embrace different abstraction levels and adopt various policies. There are a body
of work around Interface Theories [7]. SysML [6] adresses system engineering at
modeling levels. SystemC [4] adopts a rather low abstraction level by composing
software or hardware modules which are classes containing processes modelling
functionalities. The core of SystemC consists of an event-driven simulator work-
ing as a scheduler. The Ptolemy project [5,9] proposes one of the most advanced
c� Springer International Publishing AG 2017
Y. Ouhammou et al. (Eds.): MEDI 2017, LNCS 10563, pp. 1–9, 2017.
DOI: 10.1007/978-3-319-66854-3 22

A
u

th
o

r 
P

ro
o

f



2 J.C. Attiogbé

framework, Ptolemy II [17] with which we share some concerns. But these are
general purpose and heavy weight approaches which, from our point of view,
constraint a lot the used components; they build a kind of a scheduler of the
whole composition of components. Unlike approaches with strong coupling of
formalisms inside a main one, we target a specific framework with a weak cou-
pling of components described with different formalisms. We address systems
with evolving adhoc structures, for small aperture net of components. The com-
ponents can the be composed (plugged) or unplugged at any time.

This work is motivated by the necessity of light methods and tools to face
the construction and the analysis of heterogeneous systems. The difficulties of
heterogeneity arise not only at language level (data, property or behavioural),
but also at the semantic level.

We propose a method supported by a tool (aZiZa), to make it easier the
composition and the interaction between heterogeneous behavioural models.
The main idea is that one can easily compose models described with differ-
ent formalisms but having the same compatibility domain. Currently we focus
on behavioural models.

The article is organized as follows. Section 2 introduces the materials we have
used. Section 3 is devoted to the proposed method, an algebra to structure the
composition of models. Section 4 reports on experimentations and evaluation
supported by the developed tool. Section 5 concludes the article.

2 Materials: Models Compatibility and Composition

Heterogeneity is concerned with description formalisms and semantic models; but
we focus on semantic models which we consider as compatibility domains. Sev-
eral categories of compatibility domains can be considered, for instance labelled
transition systems, event-based models, predicate transformer á la Dijkstra.

Compatible Models. Two models M1 and M2 (or more) are said compatible
or not, with regard to at least three compatibility levels: syntactic compatibility,
semantic compatibility and formal-reasoning compatibility. Transition Systems
[2], Mealy Machines [16], with their various extensions, are widely used to handle
complex dynamic systems and are at the heart of many methods analysis and ver-
ification tools. The underlying theories are well studied and, in the current state
of the art a lot of effective systems are compiled into labelled transition systems
(LTS). Process Algebra (such as CCS [14], CSP [15], LOTOS [12], π-calculus
[13]) built on top of transition systems are recognized as powerful behavioural
description models; they are also representative of many behavioural languages,
hence their use as composition and interoperability basis.

Definition 1. (Compatibility Domain) A Compatibility Domain is defined as a
category of models characteristics in such a way that, any two models considered
within this domain, are comparable w.r.t. the considered characteristics. It is a
model integration basis.

A
u

th
o

r 
P

ro
o

f



Mastering Heterogeneous Behavioural Models 3

Examples of semantic compatibility domains are: logics, labelled transition
systems, trace semantics, temporal logics, weakest preconditions, Kripke model.

Proposition 1. Within a compatibility domain, it is always possible to trans-
late objects semantics (from one formalism and paradigm) into the domain, to
compose or integrate them, to reason within the basis, and to possibly translate
results in target formalisms.

Semantic Models and Semantic Embedding. A direct application of the
notion of compatibility is the construction of semantic bridges between models
or the semantic embedding of one model into another one. We choose the LTS
as a reference behavioural model, because it is widely used and equipped with
various tools.

If two models M1 and M2 are in a compatible semantic domain (LTS in our
case), it exists structure morphisms1 ζ1 and ζ2 with related meaning matching
such that ζ1(M1) = LTS1 and ζ2(M2) = LTS2. Accordingly, we are about to
define some operators Φ which arguments are different but compatible behav-
ioural models; these operators form an algebra that leads the interaction of
behavioural models. The idea is that Φ(Mi, Mj) is semantically unfolded as
φ(ζi(Mj), ζj(Mj)) where φ is the domain-compatible equivalent of Φ.

If we consider a behavioural model M as a term of a given algebra A, a sketch
of the semantic embedding of models is as follows: we consider Ai as the source
algebra to describe various but compatible models, then it exists a compatible
domain denoted here by (S, L,→), a LTS with the set of state, the set of labels
and the transition relation.

It follows that when models are compatible, a semantic bridge can be used
to relate them via the semantic structure induced by the compatibility domain
(for instance their LTS). Consequently, a multilevel bridge can also be gradually
built between compatibility domains to link two or more models.

3 Interaction of Hererogeneous Models: An Algebra

Interaction between behavioural models, whatever their description formalisms,
is viewed as exchanges through common communicating channels. Typically the
interaction is denoted by a flow of emission and reception statements. Process
algebra models, as a compatibility domain, capture very well these interactions,
where the unit of specifications is a process expressing an elementary sequen-
tial behaviour; more complex behaviours are expressed with the composition
(sequential, parallel, etc.) of other processes, elementary or not.

Handling the heterogeneity is as simpler as if the LTS is the known user
manual of each component. On the one hand, we extract the LTS from given
components to compose them; on the other hand the LTS can be given by the

1 like a function on elements, a structure morphism relates mathematical objects or
structures.

A
u

th
o

r 
P

ro
o

f



4 J.C. Attiogbé

component providers. Besides, an implementation can be built from a LTS used
to tune a composition. We define a set of operators that impact the behaviour
of composition:

– a process composition can be restructured through the renaming of channels;
– process communications can be broken through the modification of channels;
– the structure of a complete net of processes can evolve through channel

restructuring, etc.

3.1 The Core Operators for Model Interaction

We are about to elaborate an algebra A to structure and analyse the composition
of heterogeneous processes. The operators of the algebra are related to the two
levels (Φ level and φ level) considered in Sect. 2, while the structure set of the
algebra is the set of processes P to be composed. Our target is an algebra
A = �P, OΦ, Oφ�; therefore we introduce these sets of operators. In the following,
a process is denoted by the term:

Process procName [channel parameters](other parameters) {body}
where we consider its name, its channels and parameters, and a body. The body
is an LTS which describes the behaviour of the process. Several named instances
of a process can be defined using the process name as a type.

A system is made with the composition of at least two processes.

compose: Abstract Parallel Composition of Processes. Let P1 and P2 be
two processes which use a shared communication channel nc.

Process Proc[nc]() P1; Process Proc[nc]() P2.

The expression S = compose(P1, P2) is the system made of the paral-
lel composition of the processes P1 and P2 which interact via their common
nc channel. Note that a channel can be hidden in a process by the renam-
ing of the channel. The arity of the compose operator is not a strong con-
straint; a set of n processes can be composed either with the binary composition

compose(. . . (compose(compose(P1, P2), P3), · · · ), Pn)
or directly with the list of processes as arguments: compose(P1, P2, · · · , Pn).

The compose operator is an instance of the Φ operator. Typically, the embed-
ding functions ζi compute the transition systems from the processes used as
arguments of compose; then φ is the synchronous product [15] of the resulting
transition systems. A component process of a system built by the compose oper-
ator may be selected with the projection operator denoted by ↑. Consequently
an operation α can be applied to a process inside a composition by selecting it
as follows: α(compose(P1, P2, · · · , Pn) ↑ P3).

rename: Renaming a Channel in a Process. The expression (P rename c
as nc) denotes a process P where the channel c is renamed as nc.

Let P3 be a process using nc as a channel: Process Proc[nc]() P3. The expres-
sion S = compose(P1, P2 rename nc as c, P3) results in a system where only P1

A
u

th
o

r 
P

ro
o

f



Mastering Heterogeneous Behavioural Models 5

and P3 interact through nc. The behaviour of P2 does not impact the behaviour
of S since P2 uses a local channel, thus the behaviour of P2 is ignored in S.

replace: Substitution of Processes. Within a system, a given process is substi-
tuted by a given new one. The replace operator needs three arguments: a system
S, a process oP already in S, a new process nP not in S. The process oP should
share its channels with S. The process nP should have the same shared channels
(for the substitution) but it can have more channels. The effect of the replace-
ment is based on the shared channels; the shared channel oP is cut and replaced
by the common channel in nP . The expression sys = replace(Sys, oP, nP ) mod-
ifies Sys by replacing inside it, the behaviour of oP by the new behaviour
expressed by nP .

Formally the channels shared by Sys and oP are renamed in oP with a new
name unused in Sys and nP . Then Sys is composed with nP . Consequently if
nc is the channel shared by the three processes, c a fresh channel, then we have:

replace(Sys, oldP, newP ) = compose(Sys, (Sys ↑ oP ) rename nc as c, nP)

remove: Removing a Process from a Composition. A given process can
be removed from a system. The remove operator (symbolically denoted by
↓) requires two arguments: a system S made at least with two processes,
a process P already part of S. The process P will be removed from S;
this is symbolically denoted by S ↓ P . For instance the expression sys =
remove(compose(P1, P2, P3), P2) results in a system composed of the processes
P1 and P3.

extractChan: Listing the Channels of a Process. This operator, when
applied to a process, gives the list of channels used inside the process. The
channels of processes can then be compared, reused, renamed, hidden.

These operators make our target algebra and practically a core
language: �P, {compose, replace, select, remove}, {rename, extractChan}�. It is
enough expressive, to describe the composition and the interaction between
behavioural models as illustrated in the next section.

Semantics of Interaction. As far as the interaction between the behavioural
models is considered, each process evolves according to the channels it uses. Inter-
action is based on communication via shared channels using emission and recep-
tion mechanisms (message passing). Synchronous channels involve handshake
communications. A reception takes place when a process applies the appropriate
reception primitive relatively to a channel and, there is a (abstract) data sent on
the addressed channel by the emission primitive applied by another process. In
the case of asynchronous channel, if there is nothing on the channel, the attempt
of reception is aborted.

3.2 Illustration: A Heterogeneous Control System

We consider the interaction between a net of processes modelling a control system
equipped with sensors, actuators and controlers, from various vendors.

A
u

th
o

r 
P

ro
o

f



6 J.C. Attiogbé

Let a process controller C1 interacting by reading a channel ic and writ-
ing on a control channel cc. Let a process Sensor S1 interacting by send-
ing data on the same channel ic. At the modelling level, we could simply
write compose(C1, S1) so that C1 and S1 interact via ic. Considering A1 as
the actuator process interacting by reading the channel cc, then the descrip-
tion sys = compose(compose(C1, S1), A1) builds a new system where the three
processes interact together through the channels ic and cc. The controler C1 may
send orders to the actuator A1 depending on data read from S1. Now, we define
two actuator processes A2 and A3 and a hub of actuators HA which sends its
data to A1, A2 and A3:

Actuator A2; Actuator A3; HA = compose((A1 rename cc as sc), A2, A3)

The behaviour expressed by replace(sys, A1, (HA rename sc as cc)) results in
a new system where the controler C1 is not anymore directly connected to A1

but to HA via the channel cc, a renaming of the previous sc channel of HA.
In the same way we can easily add new sensors S2, S3 into an existing pool of
sensors with the compose operator: compose(sys, S2, S3). The three sensors will
write on the channel ic.

3.3 Extending the Core Operators

Consider that we have a system made of sensors, actuators, controlers and many
other smart devices, making an adhoc network of communicating processes. We
would like to plug a new device in the system; for instance a new plugged sensor
detects the existing controlers and sends data to them, or a new plugged actuator
joins the system and becomes ready to interact with the existing processes which
send orders to the actuators. The system builder may evaluate the forthcoming
system, decide if some components or operations are correct before performing
them on the real system. This is profitable if the used models and operations on
models are trustworthy. Consequently we would like to easily check the consis-
tency of the new composition of processes prior to implementing it. For instance,

check(compose(sys, newSensor))
check(replace(sys, oldProcess, newProcess))

These scenario motivate the need to define the check operator which is not
a process composition operator but an analysis one. Typically this kind of oper-
ators should implement at least the interaction compatibility, the absence of
deadlock, liveness property. In the current stage of the work we reuse for this
purpose, the existing tools of process algebra: Uppaal [3] which has its own
graphical input description formalism, SPIN [10] which has the Promela lan-
guage as input process description language and CADP [8] which uses Lotos as
input process description language.

A
u

th
o

r 
P

ro
o

f



Mastering Heterogeneous Behavioural Models 7

4 Experimentations and Evaluation

We used the proposed operators to experiment with case studies, see for instance2

for a detailed version of a case study of a distributed control system where various
processes cooperate to control objects evolving within a given area.

The system consists of a set of robots which supervise a geographically wide-
spread area and take actions with respect to events in the area: intruders or found
unusual objects. Sub-components of the system are responsible of patrolling in
different parts of the area and looking for preassigned objects; in case of detec-
tion of such objects a signal is sent to a supervisor. Other sub-components fol-
low a specific object or a detected intruder and communicate its location to the
supervisor. Several compatible processes initially described using DOT, Uppaal,
promela were composed using our algebra. Several ζi morphisms were used to
embed the described process models into LTS. The DOT formalism have been
intensively used. The LTS are then embeded into Uppaal. For the current experi-
ments the Uppaal tool have been used for the composition and the formal analysis
of the composed system. We have been able to perform deadlock analysis and
state reachability on the composed system.

Tool Support. To experiment with examples, we have developed the main
modules of a prototype tool called aZiZa (see footnote 2), to support our method
proposal. This is necessary to experiment and validate the proposed concepts and
to improve the global composition method.

5 Conclusion

We have shown that under the hypothesis of semantic domain compatibility,
the composition of heterogeneous behavioural models can be overcomed. We
have used labelled transition systems as common semantics domain to found our
method of composition. The method is based on an algebra of operators that focus
on the manipulation of channels as the communication mechanism between the
composed models. We have equipped the method with a tool in order to experi-
ment with case studies that serve as a mean of assessment of the proposal.

One representative of the related works is Ptolemy II [11,17]. Ptolemy
achieves the interaction between different actor-oriented models using an
abstract semantics (namely the actor semantics). It also enables the use of finite
state machines in place of actor-oriented models, but the interaction works rather
as a global scheduler, controling a sequential execution flow of the FSM consid-
ered each as a global state linked via a port to another one. Moreover Ptolemy
II is a general purpose heavy weight composition framework. Unlikely we target
a specific, flexible and extensible framework dedicated to the composition and
analysis of behavioural models dedicated to the growing small aperture nets of
processes.

2 http://aziza.ls2n.fr.

A
u

th
o

r 
P

ro
o

f



8 J.C. Attiogbé

Yet we have considered some experiments where components deal locally
with time constraints but dealing with time constraints at the global level is a
challenge. As future work, we have planned experimentations with the CADP
framework and especially its exp.open composition tool. We plan some improve-
ments among which the propagation of global properties inside local components
and vice versa. For this purpose we are investigating the Property Specification
Language [1], an IEEE standard, as a pivotal for property passing through the
components and through the various tools.

References

1. IEC 62531 Ed. 1 (2007–2011) (IEEE Std 1850–2005): Standard for Property Spec-
ification Language (PSL). IEC 62531:2007 (E), pp. 1–152, December 2007

2. Arnold, A.: Verification and comparison of transition systems. In: Gaudel, M.-
C., Jouannaud, J.-P. (eds.) CAAP 1993. LNCS, vol. 668, pp. 121–135. Springer,
Heidelberg (1993). doi:10.1007/3-540-56610-4 60

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30080-9 7

4. Black, D.C., Donovan, J., Keist, A., Bunton, B. (eds.): SystemC: From the Ground
Up, 2nd edn. Springer, Heidelberg (2010)

5. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity - the ptolemy approach. Proc. IEEE
91(1), 127–144 (2003)

6. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML. The
MK/OMG Press, Morgan Kaufmann, Boston (2015)

7. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In:
Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–
165. Springer, Heidelberg (2001). doi:10.1007/3-540-45449-7 11

8. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

9. Goderis, A., Brooks, C.X., Altintas, I., Lee, E.A., Goble, C.A.: Heterogeneous
composition of models of computation. Future Gener. Comp. Syst. 25(5), 552–560
(2009)

10. Holzmann, G.J.: The spin model checker. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

11. Lee, E.A.: Disciplined heterogeneous modeling. In: Petriu, D.C., Rouquette, N.,
Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6395, pp. 273–287. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-16129-2 20

12. LOTOS: a formal description technique based on the temporal ordering of obser-
vational behaviour. International Standard 8807, IOS - OSI, Geneva (1988)

13. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. J. Inf. Comput.
100, 1–40 (1992)AQ2

14. Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River
(1989)

A
u

th
o

r 
P

ro
o

f



Mastering Heterogeneous Behavioural Models 9

15. Roscoe, A.W., Davies, J.: CSP (communicating sequential processes). In: Padua,
D.A. (ed.) Encyclopedia of Parallel Computing. Springer, Heidelberg (2011).
doi:10.1007/978-0-387-09766-4 186

16. Roth, C.H., Kinney, L.L.: Fundamentals of Logic Design. Thomson, Luton (2004)
17. Tripakis, S., Stergiou, C., Shaver, C., Lee, E.A.: A modular formal semantics for

ptolemy. Math. Struct. Comput. Sci. 23(4), 834–881 (2013)A
u

th
o

r 
P

ro
o

f


