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Abstract. Unmanned Aerial Vehicles (UAV) are now widespread in our
society and are often used in a context where they can put people at risk.
Studying their reliability, in particular in the context of flight above a
crowd, thus becomes a necessity. In this paper, we study the modeling AQ1

and analysis of UAV in the context of their flight plan. To this purpose,
we build a parametric probabilistic model of the UAV and use it, as well
as a given flight plan, in order to model its trajectory. This model takes
into account parameters such as potential filter or sensor (like GPS) fail-
ure as well as wind force and direction. Because of the nature and com-
plexity of the successive obtained models, their exact verification using
tools such as PRISM or PARAM is impossible. We therefore develop a
new approximation method, called Parametric Statistical Model Check-
ing, in order to compute failure probabilities. This method has been
implemented in a prototype tool, which we use to resolve complex issues
in a practical case study.

Keywords: UAV · Formal model · Markov chain ·
Parametric statistical model checking

1 Introduction

Unmanned Aerial Vehicles (UAV) are more and more present in our lives through
entertainment or industrial activities. They can be dangerous for their environ-
ment, for instance in case of a failure when an UAV (aka a drone) is flying above
a crowd. Unfortunately until today, there does not exist any kind of UAV reg-
ulation around the world. Only some recommendations are used; for instance
in order to avoid accidents in case of malfunctioning, a drone should never fly
above a crowd.

In this context, we are working with PIXIEL group to build a reliable UAV
control system. PIXIEL group is a company expert in safety drones and public
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2 R. Bao et al.

performances including UAVs. For example, PIXIEL is in particular known for
developing a public performance in the French entertainment park called “Puy
du Fou” that includes both human actors and drones. The company is strongly
attached to the safety of the public. Therefore, ensuring that its UAV systems
are secure for humans during the performances is a priority. As for the current
practices, the performances including UAVs are only allowed to occur when the
weather is sunny and when the area above which the UAVs fly is unauthorized
for actors and public. However, there is no certification proving that the UAVs
always follow their intended flight plan.

The management of performances indeed requires to pay close attention to
the drone trajectory computation as well as to the accuracy of the measure-
ments concerning its immediate position in space and its movements. However,
a rigorous study is necessary to ensure reliability of the drone control system,
for instance by decreasing the risks of failure using the appropriate tuning of the
drone flying parameters which impact the computation of its trajectory. Accord-
ingly, the questions are how to prove that the UAV failure probability is low and
which parameters have to be taken into account to ensure human safety during
performances including UAVs.

High-quality aircrafts such as Hexarotors can easily avoid the majority of
minor failures related to hardware because they can fly with only five motors
and the probability of concurrent failure of more than two motors is in general
negligible. In the same way, in case of battery failure, the UAV is able to land
down on a specified area without any safety issue for the environment as long as
it is situated in a safe zone where humans are not endangered. However, software
failure may be a lot more problematic and complex to study. In this case, the
UAV behavior might become unpredictable. One critical issue in this context
is the potential inaccuracy of position estimation in drone systems, either as a
result of inaccurate sensor measurements or of misinterpretation of data coming
from those sensors. Besides aircraft system failure consideration, there is also a
far more critical aspect to take into account: the weather environment. Therefore,
a general approach to improve UAV safety is to study the impact of inaccuracy
in position measurements on the resulting flight path compared to a given, fixed,
flight plan while taking into account weather conditions.

There are many works dedicated to the UAV domain. In [20] Koppány Máthé
and Lucian Buşoniu basically explain the functioning of a drone. UAV movement
recognition is studied in [10]. Automatic landing on target is described in [17]
and monitoring and conservation are dealt with in [11]. Some works also try to
detect breakdowns and malfunctions that can impact drones. We can mention
inter alia, the detection of communication errors in a multi-drone framework
studied in [13] or the development of a basic diagnosis model for solving system
issues in [9]. Our work is closer to this second category of topics. However, to
the best of our knowledge, there are no existing works on the parametric study
of the impact of component inaccuracy on UAV trajectory. In [5,24] the authors
study through the secure estimation problems how to estimate the true states of
an UAV system when the measurements from sensors are corrupted, for instance
by attackers. In their work, these authors reformulate the estimation problem
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Parametric Statistical Model Checking of UAV Flight Plan 3

into the error correction problem and then they use the successively observed
measurement anomalies to reconstruct the correct states of the system. While
the used techniques are completely different, the objectives of avoiding bad states
is similar to ours, in avoiding the states reaching bad security zones.

The purpose of our work is therefore to provide means to study the reliability
of UAVs in the context of a given flight plan. In order to do that, we have to
build a formal (mathematical) model which will allow us (1) to analyze the
drone system and detect the most important parameters, and (2) to tune those
parameters in order to reduce the system failure probability. To this intent,
we thoroughly study the UAV system, formalize it and analyze it with using
parametric probabilistic methods. Among the components of a drone system,
we particularly focus on the Flight Control System (FCS), which is responsible
for computing estimations of the UAV position during its flight in order to adapt
its trajectory to a given predefined flight plan. We therefore build a formal model
of the flight controler in terms of parametric probabilistic models that takes into
account the potential inaccuracy of the position estimation. Since UAVs are
particularly sensitive to the weather environment (and in particular to wind
conditions), we also enhance our model in order to take into account potential
wind perturbations. Since wind force can drastically vary from one point of a
given flight plan to another, we also use parameters to encode the wind force
and allow our model to adapt to particular weather conditions.

The contributions of this paper are:

– a method to build a parametric model of UAV systems; the parameters can
then be finely tuned until reaching values that ensure defined safety thresh-
olds;

– a parametric statistical model checking technique; this enables us to formally
analyze the parametric models build for the drones. Indeed because of the
complexity of the built models, tools such as PRISM [15,16] and PARAM
[12] were limited for their analysis.

– an illustration of the use of our method on a complex industrial case study.

The paper is organized as follows. In Sect. 2 we provide the essential back-
ground to understand UAV functioning and then we build a formal model that
support their behaviours. Section 3 is an introduction to parametric Markov
chains and Statistical Model Checking. Implementations of the models and
experimentations are presented in Sect. 4; finally Sect. 5 draws conclusions and
further work.

2 Building a Formal Model of UAV

In this section, we present our method to build the UAV model. Recall that
we are interested in studying UAV safety, i.e. studying the probability that a
UAV encounters dangerous situations. These situations are of two kinds: either
the UAV can stop flying and fall, or it can enter a “forbidden” zone were it
endangers humans. As explained earlier, professional UAV can handle the falling
risk through material redundancy. Moreover, as long as a UAV stays in a “safe”
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4 R. Bao et al.

zone, it will not endanger human even in case of falling. The aim of our model
is therefore to evaluate the probability for a UAV to enter a “forbidden” zone.

We start by explaining how the zones are computed with respect to the
given flight plan. We then show how the UAV software can be decomposed
into components and focus on the most important ones. Finally, we detail how
the formal (mathematical) models for the important components are built and
present the resulting global model.

2.1 Safety Zones

Fig. 1. Safety zones

In the context of software,
considerations in airborne sys-
tems and equipment certifica-
tion (named DO-178C) defined
five levels of safety zones, the
most secure being Zone 1 and
the most dangerous being Zone
5. These zones are character-
ized by their distance from the
intended flight plan, as shown in
Fig. 1.

The size of each safety zone is not definitely fixed; it can be defined for a
specific requirement or for a given application. In practice the safety zones are
specifically defined for a flight environment and for a given flight plan. The
main principle is that no human should be present in Zones 1 to 3, while a few
people can be present in Zone 4 and most people can be present in Zone 5.
As a consequence, the probability that the UAV endangers humans is directly
proportional to the probability that it enters Zones 4 or 5. In the following of
the paper, our target will therefore be to compute this probability.

2.2 Drone Components

We now move to the decomposition of the UAV hardware and UAV software into
components and introduce the most important component in the UAV system:
the flight controller (FC). The FC is responsible for collecting data from various
sensors, using this data to compute the precise position and attitude of the drone
and adjust the attitude in order to follow the given flight plan to the best of its
ability.

Fig. 2. Attitude coordinates

Notice the difference between posi-
tion and attitude: while the position of
the UAV is defined by 3-dimensional
coordinates x, y and z, its attitude is
the collection of yaw , pitch and roll
measurements for the UAV compared
to the vertical (see Fig. 2). The atti-
tude allows to control the movement
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Parametric Statistical Model Checking of UAV Flight Plan 5

Fig. 3. Flight control overview

of the UAV: by controlling the speed of each motor, one can control which
motor will be the highest, and hence control the direction the UAV will fly to.

Flight Controller. As explained above, the FC is the central component in any
UAV as it is responsible for collecting data from sensors and translating them to
the UAV attitude. An overview of the FC of an UAV is given in Fig. 3. Remark
that the FC can be linked to components responsible for communicating with a
remote control. While these components are necessary in order to allow a pilot
to take over when the automatic flight mode of the UAV fails, we will consider
in the following that this is not the case and that the UAV we study are always
in automatic flight mode.

As one can see from Fig. 3, the intuitive behavior of the FC is as follows.
The filter uses sensors measurements in order to compute the current drone
position and attitude. Since the data can be noisy and inaccurate, the filter
uses complex algorithms in order to clean the noises in the measurements and
compute a realistic position and attitude. Remark that in some cases, the filter
can itself introduce inaccuracy in the computed position and attitude, which can
be problematic. Once the estimated current position and attitude are computed,
the Proportional Integral Derivative (PID) uses this information to compute the
local trajectory that the drone has to follow in order to be as close as possible
to its intended flight plan. This local trajectory is then transformed into a new
value for the attitude of the drone. Finally, Modulation transforms this attitude
into signal to the Electronic Speed Controller (ESC) which is responsible for
controlling each motor’s speed.

Recall that we are interested in computing the probability that a UAV enters
a forbidden zone while following its flight plan. By construction, as long as the
position and attitude measurements are perfect, there is no reason why the UAV
should deviate from its intended trajectory, and therefore the probability that it
enters a forbidden zone is null. However, as explained above, the data gathered
from sensors can be noisy and inaccuracy can sometimes be introduced through
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6 R. Bao et al.

filtering. In this case, the estimated position and attitude of the UAV can be
faulty, resulting in a deviation from the intended flight plan and potentially
leading to a forbidden zone. It is therefore of paramount importance to study
how the filters work and to take into account in our formal model the potential
inaccuracy of position and attitude measurement.

Filter. The role of the filter is to use sensors measurements in order to compute
the UAV position and attitude with the highest possible precision. However, the
high precision comes with a cost in terms of complexity: in order to gain precision,
filters have to run complex algorithms which takes time. As a consequence, the
most precise filters are also the slowest, which implies that the position can be
estimated less often, which itself results in inaccuracy.

There exists a large amount of filters in UAV industry, among which one
can find Extended Kalman Filter (EKF) [22], Explicit Complement Filter [8],
Gradient Descent [19], Conjugate Gradient, and a more accurate but slower
filter: Unscented Kalman Filter (UKF) [6], etc. Usually, researchers use EKF as a
fundamental to compare to other kinds of filters and explain precision and speed
differences. All filters improve their accuracy during the flight through training,
in particular by recording recurrent noises and correcting them. However, this
training is only valid through a single flight and is lost as soon as the UAV lands.

Since the accuracy of the estimated position and attitude is of paramount
importance for computing the probability of entering a forbidden zone, and
since the choice of filter has a direct impact on this measurement, we chose
to implement this accuracy as a parameter of our model. This will be explained
in more details in Sect. 2.4.

2.3 Formal Model of the UAV in Its Environment

Fig. 4. A flow diagram of
the formalization steps

We use a flow diagram to present our global approach
for formalizing the UAV functioning (See Fig. 4).
After a step where the filter computation reflects the
precision of position and attitude estimation, we con-
sider the computations of the probabilities to reach
the given safety zones in the next time-step; accord-
ingly, the idea is to adapt the next attitude according
to the original flight plan in order to be more secure.
The last step allows to incorporate wind perturba-
tions and compute the next UAV position.

As explained above, the filter is one of the most
crucial components and its ability to estimate the UAV position precisely has a
huge impact on the probability of reaching a forbidden zone. For this reason, we
choose to represent the accuracy of the estimated position of the UAV (therefore
including both sensor measurements and filter correction) as a parameter of our
model. In the following, we show how the next position of the UAV is computed
according to the current estimated position, and how errors in the estimation
can lead to the drone entering forbidden zones.
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Parametric Statistical Model Checking of UAV Flight Plan 7

Computation of the Next Position. We now explain how the next position
is computed according to the estimated current position. In particular, we show
that inaccuracy in the estimation can lead the UAV to entering a forbidden zone.

Fig. 5. Issue on drone location and misleading positions

For the sake of simplicity, we assume here that the UAV moves in 2 dimen-
sions only and that inaccuracy only occurs on one of them. Figure 5 illustrates
the situation. Assume that the intended flight plan consists in going from point A
to point B. Assume also that the current position of the UAV is exactly on A but
that the estimated position (taking into account sensors and filter inaccuracy)
is on A�. As a consequence, the PID will try to correct the current deviation by
changing the angle of the UAV in order to lead it back to B. However, since the
UAV is really on A, the correction will instead lead the UAV to a position B �,
in the forbidden zone. Fortunately, the position estimation takes place several
times between A and B, according to the filter frequency f . Therefore, a new
position will be estimated before reaching B �, hopefully with a better accuracy,
which will allow the PID to again correct the trajectory. We should also take into
account that the speed of the UAV is also computed according to the flight plan,
which precises the remaining time and distance before the next checkpoint. We
now show how we can compute the safety zone where the UAV ends before the
position is estimated again. In Fig. 5, this zone is represented by the distance Sn.

Let Sanswer be the distance that the UAV covers before a new estimation of
the position. Let V be the velocity of the UAV, which is computed by the PID in
order to reach B on time, i.e. in precisely T time units. We therefore have V =
A�B/T , and Sanswer = V/f = (A�B)/(T ∗ f). Finally, AA�/A�B = Sn/Sanswer,
and therefore

Sn =
AA�

T ∗ f
.

Remark that the resulting deviation is directly proportional to AA�/f , hence
the necessity to take into account the trade-off between accuracy and filter speed
in order to optimize the probability of never entering any dangerous zone.
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8 R. Bao et al.

Taking into account wind perturbations follows a similar computation than
the one presented above. This allows us to incorporate wind parameters as well
in our model.

2.4 Resulting Global Model

Fig. 6. Global behaviour of the FCS

The global model of the UAV flight
control system is depicted in Fig. 6.
The purpose of this model is to rep-
resent the computations taking place
in the FCS in order to adapt the UAV
trajectory to the intended flight plan
according to inaccurate position and
attitude estimations as well as wind
perturbations. In this model, the exact
position of the UAV is encoded using
3-d coordinates. These coordinates are
then compared to the intended flight
plan in order to decide to which safety
zone they belong. As soon as the UAV
reaches one of the forbidden zones (4
or 5), the computation stops.

The model uses several proba-
bilistic parameters. Parameters Filter-
Proba1, FilterProba2, FilterProba3,
FilterProba4 and FilterProba5 repre-
sent the accuracy of the position and
attitude estimation by both the filter
and the sensors. The resulting prob-
abilistic choice depicted in the box
labelled Filter Computation there-
fore dictates the distance between the
exact and estimated position of the
UAV. This choice is followed by a com-
putation in the box labelled Safety
Zone Computation that computes
the exact coordinates of the next posi-
tion of the drone and allows to decide

the safety zone to which this position belongs. When the wind is not taken into
account, the result of this computation is enough to decide whether the model
should pursue its execution. When the wind is taken into account, another step
follows, depicted in the box labelled Wind Computation, where other prob-
abilistic parameters are used in order to decide the wind strength (we assume
that the direction is constant) and a new position taking into account these
perturbations is computed. Finally, the zone to which this last position belongs
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Parametric Statistical Model Checking of UAV Flight Plan 9

is computed and, depending on whether this zone is safe, the model goes on to
another position estimation.

Remark that the filter frequency and the position and distance of checkpoints
in the flight plan are given as inputs to the model. The position of checkpoints in
the flight plan allows to compute the required UAV speed, while the frequency
of the filter allows to fix the number of position estimations that will happen in
a given flight plan (i.e. the number of loops the model goes through, at most).

3 Parametric Statistical Model Checking

As explained above, we have developed a parametric probabilistic model in order
to represent the behaviour of our UAV according to a given flight plan. We
now introduce the necessary theory to formally compute the probabilities of a
given UAV entering a forbidden zone in the context of its flight plan. We start
by recalling a classical verification technique called Statistical Model Check-
ing (SMC), then introduce the modeling formalism we use: parametric Markov
Chains (pMCs) and finally show how SMC can be adapted to this formalism.

3.1 Standard Statistical Model Checking

Recall that a Markov Chain (MC) is a purely probabilistic model M = (S, s0, P ),
where S is a set of states, s0 ∈ S is the initial state, and P : S × S → [0, 1] is
a probabilistic transition function that, given a pair of states (s1, s2), yields the
probability of moving from s1 to s2.

Given a MC M, one can define a probability measure on the infinite execu-
tions of M using a standard construction based on the σ-algebra of cylinders.

A run of a MC is a sequence of states s0, s1 . . . such that for all i, P (si, si+1) >
0. Given a finite run ρ = s0s1 . . . sl, its length, written |ρ| represents the number
of transitions it goes through (including repetitions). Here |ρ| = l. We write
ΓM(l) (or simply Γ (l) when M is clear from the context) for the set of all finite
runs of length l, and ΓM for all finite runs i.e. ΓM = ∪l∈NΓM(l). As usual we
define the probability measure, written PM on runs based on the sigma-algebra
of cylinders (see e.g. [2]). This gives us that for any finite run ρ = s0s1 . . . sn,
PM(ρ) =

�n
i=1 P (si−1, si). In the rest of the section, we only consider finite

runs. Given a reward function r : Γ (l) → R, we write El
M(r) for the expected

value of r on the runs of length l of a given MC M.
Statistical Model Checking [23] is an approximation technique that allows

to compute an estimation of the probability that a purely probabilistic systems
satisfies a given property1. In particular, the Monte Carlo technique uses samples
of the runs of length l, Γ (l), of a given Markoc chain M in order to estimate the
probability that M satisfies a given bounded linear property. It can also be used

1 Particular SMC techniques also allow to estimate the satisfaction of qualitative prop-
erties [18].
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10 R. Bao et al.

for approximating the expected value of a given reward function r on the runs
Γ (l) of M. In order to provide some intuition, we briefly recall how standard
Monte Carlo analysis works in the context of statistical model checking of MC. In
this context, a set of n samples of the runs of the MC. These runs are generated
at random using the probability distribution define through the Markov chain.
Each of these samples is evaluated, yielding a reward value according to the
reward function r. According to the law of large numbers (see e.g. [21]), the
mean value of the samples provides a good estimator for the expected value
of the reward function r on the runs of the given MC. Moreover, the central
limit theorem provides a confidence interval that only depends on the number
of samples (provided this number is large enough).

3.2 Parametric Markov Chains (pMC)

Markov Chains are inadequate in the context of drone flight plan analysis.
Indeed, the models we develop in this context are subject to uncertainties that
we model using parameters, such as precision of the position and attitude esti-
mations and wind strength. The resulting models are therefore not purely prob-
abilistic since they contain parameters. As a consequence, we need to use a more
expressive type of model that allows to take into account probabilistic parame-
ters, such as Parametric Markov Chains (see e.g. [1]).

A pMC is a tuple M = (S, s0, P, X) such that S is a finite set of states, s0 ∈ S
is the initial state, X is a finite set of parameters, and P : S × S → Poly(X)
is a parametric transition probability function, expressed as a polynomial on
X. A parameter valuation is a function v : X → [0, 1] that assigns values to
parameters. A parameter valuation v is valid w.r.t. a given pMC M if, when
replacing parameters with their assigned values, the resulting object is a MC
(i.e. the outgoing probabilities of all states sum up to 1). If v is a valid parameter
valuation with respect to M, the resulting Markov chain is written M�.

Given a pMC M, a run ρ of M is a sequence of states s0s1 . . . such that
for all i ≥ 0, P (si, si+1) �= 0 (i.e. the probability is either a strictly positive real
constant or a function of the parameters). As for MCs, we write ΓM(l) for the
set of all finite runs of length l and ΓM for the set of all finite runs.

Observe that for any valid parameter valuation v, ΓMv (l) ⊆ ΓM(l) since v
may assign 0 to some transition probabilities.

3.3 Parametric SMC

As it is, standard SMC cannot be used in the context of pMC because of their
parametric nature. Indeed, we cannot produce samples according to the para-
metric transition probabilities. Luckily, the underlying theory used in SMC can
be extended in order to take into account parameters. The method we propose in
the following is in line with a technique called importance sampling (see [21] for
a description). The purpose of this technique is to sample a stochastic system
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Parametric Statistical Model Checking of UAV Flight Plan 11

using a chosen probability distribution (which is not the original distribution
present in this system) and “compensate” the results using a likelihood ratio in
order to estimate a measure according to the original distribution. In the con-
text of SMC, importance sampling has mainly been used in order to estimate the
probability of rare events [3] and/or to reduce the number of required samples
in order to obtain a given level of guarantee [14]. It has also been used in the
context of parametric continuous-time Markov chains in order to estimate the
value of a given objective function on the whole parameter space while using a
reduced number of samples [4]. However, to the best of our knowledge, impor-
tance sampling has never been used in order to produce symbolic functions of
the parameters as we do here.

The intuition of the method we propose here is to fix the transition proba-
bilities to an arbitrary function f , which we call normalization function, and to
use these transition probabilities in order to produce samples of the pMC M.
However, instead of evaluating the obtained runs by directly using the desired
reward function r, we define a new (parametric) reward function r � that takes
into account the parametric transition probabilities. We show that, under any
parameter valuation v, the evaluation of the mean value of r � on the set of sam-
ples is a good estimator for the expected value of the reward r on Mv. The
central limit theorem (see e.g. [21]) also allows to produce parametric confidence
intervals, but we do not go into details here (see [7] for more details on this
topic).

Remark. The choice of the normalization function is crucial. In particular, the
results presented below require that the graph structure of the MC obtained with
this normalization function is identical to the graph structure of the MC obtained
using the chosen parameter valuation. This is discussed in more details in [7].
In the following, we only consider parameter valuations that assign non-zero
probability to parameterized transitions. Since we use the uniform normalization
function, the graph structures of the obtained MCs are indeed identical, which
ensures that the results presented below hold as expected.

Let Pa : ΓM → Poly(X) be a parametric reward function. For any valid
valuation v and any run ρ ∈ ΓMv we have PMv (ρ) = Pa(ρ)(v).

Given any valid normalization function f and any run ρ ∈ ΓM, let paramet-
ric reward function r� be r�(ρ) = Pa(ρ)

PMf (ρ)r(ρ).

We now prove that the expected values are equal. Let ρ ∈ ΓMf (l) be a
random sample of Mf and let Y be the random variable defined as follows
Y = r�(ρ). The following computation shows that, under any valid parameter
valuation v such that Mf and Mv have the same structure, we have E(Y )(v) =
El

Mv (r).
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12 R. Bao et al.

E(Y )(v) =
� �

ρ∈ΓMf (l)

PMf (ρ)y(ρ)
�

(v)

=
� �

ρ∈ΓMf (l)

PMf (ρ)
Pa(ρ)

PMf (ρ)
r(ρ)

�
(v)

=
�

ρ∈ΓMf (l)

Pa(ρ)(v)r(ρ)

=
�

ρ∈ΓMf (l)

PMf (ρ)r(ρ)

=
�

ρ∈ΓMv (l)

PMf (ρ)r(ρ)

= El
Mv (r)

Our adaptation of the Monte Carlo technique for pMC is thus to estimate
the expected value of Y in order to obtain a good estimator for the expectation
of r. Let ρ1, . . . , ρn be a set of n runs of length l of Mf . Let Yi be the random
variable with values in Poly(X) such that Yi = r�(ρi). Notice that the Yi are
independent copies of the random variable Y . Yi are therefore independent and
identically distributed. Let γ be the parametric function giving their mean value.
By the results above, for all valid parameter valuation v such that Mv and Mf

have the same structure, El
Mv (r) = E(Y )(v) = E(

�n
i=1 Yi/n)(v) = γ(v). Our

parametric approximation of the expected value is therefore:

�γ =
�n

i=1 Yi/n.

In the sequel we will this use Parametric Statistical Model Checking (PSMC)
to check the formal model we will implement for the UAV.

4 Implementation, Experimentations and Results

While our complete formal model has been introduced in Sect. 2 in the form of
an automata, we now explain how we successively implemented and improved
the model by considering different formalisms and model checking tools. At each
step, we show the limitations of the related model which leads to the next step
of the implementation. The different steps of the model implementations are
depicted in Fig. 7.

To start, a first partial version of the formal model of Sect. 2.3 was imple-
mented as a PRISM model using the PRISM tool [16], without parameters.

This first version, as depicted in Fig. 7a, corresponds to a very simple UAV
flight plan, going in a straight line from point A to point B in T time units. In
this context, the intermediate positions are estimated T ∗f times, where f is the
frequency of the filter. The sizes used for the five security zones are respectively
20m, 40 m, 60 m, 80 m and 100m.
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Parametric Statistical Model Checking of UAV Flight Plan 13

Fig. 7. Incremental development of the SMC model

As explained in Sect. 2,
the filter removes the noise
corrupting data coming
from sensors. In this first
version, we only consider
potential deviations along
the y-axis. At each com-
putation step, the inaccu-
rate position given by the
filter is computed using
the accuracy of the filter
and sensors (as a single
real-valued variable), and
compared to the intended
position as given by the
flight plan. The safety zone
is deduced from the dis-
tance between the esti-
mated position and the
intended position. If the
UAV enters Zones 4 or 5,
the computation stops.

In this first model,
the accuracy of the fil-
ter is probabilistic but
not parametric, i.e. prob-
ability values have been
encoded directly in the
model. These values are
the results of a set of
experiments performed by
using a flight controller

plugged on a production line with a predefined path with a loop. We launched
several runs of the device on the production line path and measured the outputs
of the EKF filter. These measures then allowed us to compute the estimated posi-
tion, which can then be compared to the exact position on the production line.
We consequently obtained probabilities for the accuracy of the position estima-
tion using an EKF filter and sensors coming from an industrial UAV. However,
the major drawback of these experimentations is that they did not reflect a
realistic UAV environment. In particular, since the experiment was conducted
indoor using a fixed production line, the precision of some of the sensors (GPS
for instance) is not representative of the precision one could obtain in a realistic
flight environment. Although we were able to verify this model using PRISM, the
results are not representative and can only be considered as a proof-of-concept.
Since our aim is to study the same problem for different accuracy probabilities,
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we changed the exact probability values to parameters and submitted this new
model to the PRISM Model Checker. However, because of the real-valued vari-
ables used in the model and of the numerous intermediate computations, PRISM
was not able to handle this model and timed-out after 2 hours of unsuccessful
computations.

Facing these shortcomings with the PRISM tool, we considered the imple-
mentation of our model with the PARAM tool [12] which is a model checker
for parametric discrete-time Markov chains. PARAM is efficient and allows to
compute the probability of satisfying given properties as polynomials or rational
functions of the parameters. As PRISM, PARAM also failed to model check our
current version of the model. At this stage, since both PARAM and PRISM
failed to verify our simplest model because of its complexity, we considered
using a different approach based on Parametric Statistical Model Checking. For
this purpose, we developed a prototype tool2. In this context, our model was
expressed as a python program using real-valued variables both for the position
of the UAV and for the probabilistic parameters. It appears that PSMC is partic-
ularly efficient in this context, and was able to verify our model (by performing
more than 20k simulations) in less than 1 min. We therefore chose to pursue our
experimentation using this prototype tool and refined versions of our model.

In the second version of the model, depicted in Fig. 7b, we allowed devia-
tions to also occur along the x-axis. This is not problematic when considering a
straight line flight plan, but could become important as soon as the flight plan
is curved (as the one in Fig. 1). Indeed, in this context, deviations along the x-
axis (for example if the drone is “late”) could result in the PID deciding to cut
the trajectory, i.e. going straight to point C before reaching point B, therefore
promoting a trajectory that might colide with the forbidden safety zones. Again,
our tool managed to verify this model in a very short time.

For the third version of the model as depicted in Fig. 7c, we add a third target
point to the flight plan, which is not aligned with the first to points, i.e. like in
Fig. 1. In this third version, the inacurracy of the position estimation along the
x-axis also allows the UAV to be “late” and decide to cut the flight plan as
explained above.

Finally, the last version, as depicted in Fig. 7d, takes into account wind per-
turbations. We assumed here that the wind direction was constant but that the
wind force was again parametric. This will allow us to study the right trade-off
between filter capacity and frequency depending on the weather conditions. This
last version is the most complex we studied, and therefore took more time to
verify than the previous ones. With our prototype tool, it took 190 s to perform
the verification using 10k simulations in this context while the same amount of
simulations only took 28 s for the previous model (without wind parameters).3

2 available at https://github.com/paulinfournier/MCpMC.
3 We do not share the exact models used in our prototype tool for confidentiality

reasons, but the models used in PRISM and PARAM can be found here: https://
github.com/br4444/modelPrism/tree/master.
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The outputs of our prototype tool are multivariate polynomials on the param-
eters of our model. Given the number of parameters, the size of the model and
the length of the considered simulations, these polynomials are quite complex
and therefore difficult to report in this paper. As an example, below is the output
polynomial representing the probability that a UAV enters Zones 4 or 5 using
our last version of the model:

0.43 ∗ ProbaFilter3 ∗ ProbaWind1 + 0.16 ∗ ProbaFilter3 ∗ ProbaWind2

+ 0.17 ∗ ProbaFilter3 ∗ ProbaWind3 + 0.28 ∗ ProbaFilter3 ∗ ProbaWind4

+ 0.85 ∗ ProbaFilter4 ∗ ProbaWind1 + . . .

Instead of showing the resulting polynomials, we will only present the evalu-
ation of these polynomials using realistic values for the parameters. We defined
two scenarios (Scenario 1, Scenario 2) with one set of values of parameters for
each scenario. For these two scenarios, ProbaF0 (resp F1, F2, F3, F4) models the
probability that the estimated position is from 0 to 2m (resp. 2–4 m, 4–6 m, 6–
8 m, 8–10 m) from the real position. In the first (resp. second) scenario, we have
set these values to 0.15/0.3/0.4/0.1/0.05 (resp. 0.1/0.25/0.35/0.2/0.1). Accord-
ing to experiments done at PIXIEL, the first scenario is more realistic than
the second one. Similarly, the wind parameters correspond to the probability
of having a wind force of 0–20 km/h, 20–30 km/h, 30–50 km/h and 50–70 km/h
respectively and have been set to 0.55/0.43/0.01/0.01 (which corresponds to typ-
ical weather conditions in Nantes, France) for the numerical evaluation. In both
scenarios, Zone 4 (resp. 5) is situated 8 m (resp. 50 m) from the flight plan.

In Table 1, we gather the results for running the simulation for the two con-
sidered scenarios; the simulation with PSMC is performed with 10k, 20k and
50k samples. Each time, a polynomial is computed and then evaluated using the
parameter values given above. In order to illustrate the stability of our results
despite their statistical nature, each complete scenario was performed two times
(labelled V1 and V2 in the table). The value reported in the table represents
the probability of the UAV eventually reaching Zones 4 or 5 during its flight.
Experiments were performed using the formal models presented in Fig. 7c (with-
out wind) and Fig. 7d (including wind perturbations) on a flight plan resembling
the one shown in Fig. 1, with a total flight duration of 5 s and a filter frequency
of 1 Hz. We considered two versions of the model from Fig. 7d: 7d(np) where
wind strength is directly input as a constant probability in the model (result-
ing in a polynomial where the only variables represent the precision of position
estimation), and Fig. 7d(p) where wind strength is input as parameter variables
in the model (allowing to evaluate/optimize the resulting polynomial according
to any wind strength). Remark that the results in the first case are more pre-
cise because there are less variables in the polynomial, and obtained in a more
efficient manner. Depending on whether we are interested in specific or generic
information concerning the weather environment, we can chose to use the first
of the second version. Remark that the probabilities of entering the forbidden
zones are quite high. This is not surprising as Zone 4 is situated 8 m from the
intended trajectory and the precision of position estimation can be up to 10 m.
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Table 1. Results of the experiments

Model 10k 20k 50k

V1 V2 V1 V2 V1 V2

Running time Fig. 7c 28 s 51–54 s 142–143 s

Scenario 1 Fig. 7c 4.99% 5.09% 4.74% 5.10% 4.91% 4.98%

Scenario 2 Fig. 7c 10.38% 10.04% 9.82% 10.05% 9.95% 9.81%

Running time Fig. 7d(np) 28 s 53–54 s 149–155 s

Scenario 1 Fig. 7d(np) 5.43% 5.31% 5.61% 5.21% 5.59% 5.47%

Scenario 2 Fig. 7d(np) 10.8% 10.9% 10.8% 10.8% 10.9% 10.7%

Running time Fig. 7d(p) 185–190 s 311–314 s 612–621 s

Scenario 1 Fig. 7d(p) 4.95% 5.97% 5.28% 6.62% 4.16% 5.61%

Scenario 2 Fig. 7d(p) 9.55% 9.87% 10.3% 11.3% 9.57% 10.7%

These values have been made deliberately high for the purpose of this study but
can be chosen more realistically when verifying the real model.

5 Conclusion and Future Work

In this paper, we have presented a formal model to study the safety of a UAV
in automatic flight following a predefined flight plan. This formal model consists
in a parametric Markov Chain and takes that takes into account the precision
of position and attitude estimation using sensors and filters as well as poten-
tial wind perturbations. We have also proposed a new verification technique for
parametric probabilistic model: parametric Statistical Model Checking. This new
technique has been implemented in a prototype tool. While state of the art tools
such as PRISM and PARAM have timed out on the verification of the simplest
version of our formal model, our prototype tool has been able to successfully
verify the most complex version in less than 12min.

In the future, we plan to keep enhancing our model in order to include filter
frequency to be used as a parameter in the model. Using these parameters will
allow us to obtain the parametric probability to enter dangerous zones depending
on both the filter frequency and the precision probabilities. Studying/optimizing
this parametric probability will allow PIXIEL to work on the trade-off between
frequency and precision in order to choose their components wisely depending
on their intended flight plan.
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