
Modelling and verification with B Method
with Event B

J. Christian Attiogbé

Nantes, November 2018

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 1 / 23

Outline

Plan

1 A First Example: GCD

2 A motivating Case Study

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 2 / 23

A First Example: GCD

The GCD Example

Formal development
mathematical model→ programming model

Illustration: From an abstract machine to its refinement into code.

gcd(x,y) is d | x mod d = 0 ∧ y mod d = 0
∧ ∀ other divisors dx d > dx
∧ ∀ other divisors dy d > dy

Refinement = Development method = design

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 3 / 23

A First Example: GCD

Constructing the GCD: abstract machine

MACHINE
pgcd1 /* the GCD of two naturals */

/* gcd(x,y) is d | x mod d = 0 ∧ y mod d = 0
∧ ∀ other divisors dx d > dx
∧ ∀ other divisors dy d > dy */

OPERATIONS
rr <�- pgcd(xx,yy) = /* OUTPUT : rr ; INPUT xx, yy */

...
END

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 4 / 23

A First Example: GCD

Constructing the GCD: abstract machine

OPERATIONS
rr <�- pgcd(xx,yy) = /* specification of gcd */
PRE

xx : INT & xx >= 1 & xx < MAXINT
& yy : INT & yy >= 1 & yy < MAXINT
THEN

ANY dd WHERE
dd : INT
& (xx - (xx/dd)*dd) = 0 /* d is a divisor of x */
& (yy - (yy/dd)*dd) = 0 /* d is a divisor of y */

/* and the other common divisors are < d */
& !dx.((dx : INT & dx < MAXINT

& (xx- (xx/dx)*dx) = 0 & (yy-(yy/dx)*dx)=0) => dx < dd)
THEN rr := dd
END

END

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 5 / 23

A First Example: GCD

Constructing the GCD: refinement

REFINEMENT /* refinement of ...*/
pgcd1 R1

REFINES pgcd1 /* the former machine */
OPERATIONS
rr <�- pgcd (xx, yy) = /* the interface is not changed */

BEGIN
... Body of the refined operation

END
END

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 6 / 23

A First Example: GCD

Constructing the GCD: refinement

rr <�- pgcd (xx, yy) = /* the refined operation */
VAR cd, rx, ry, cr IN

cd := 1
; WHILE (cd < xx & cd < yy) DO

; rx := xx - (xx/cd)*cd ; ry := yy - (yy/cd)*cd
IF (rx = 0 & ry = 0)
THEN /* cd divids x and y; possible GCD */

cr := cd /* possible rr */
END
; cd := cd + 1 ; /* searching a greater one */

INVARIANT
xx : INT & yy : INT & rx : INT & rx < MAXINT
& ry : INT & ry < MAXINT & cd < MAXINT
& xx = cr*(xx/cr) + rx & yy = cr*(y/cr) + ry

VARIANT
xx - cd

END ; rr := cr
END

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 7 / 23

A motivating Case Study

Case study: inter-process interactions manag. system

Figure: Interaction between processus

Read the requirements document
Analysis of the requirements document
Modelling of the system
Development of the system

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 8 / 23

A motivating Case Study

Modelling the data

Given the sets SUBSCRIBER, CONNECTION

Connections ⊆ CONNECTION

ca

cb

cc

subscribers ⊆ SUBSCRIBER

s1

s2

s3

s4

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 9 / 23

A motivating Case Study

Modelling the state space

Req Each connection has one caller, which has only one connection

Conx Subsc

callerConx

ca

cb

cc

cd

s1

s3

s2

s4

We need a total injective function to specify that.
J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 10 / 23

A motivating Case Study

Modelling

Each element in the domain of callerConx has one image:

callerConx : Conx �→ Subsc

(ca, s1) ∈ callerConx ; (cb, s4) ∈ callerConx; · · ·

callerConx(cb) = s4 callerConx(ca) = s1

the reverse is defined callerConx−1(s4) = cb

* the function is not defined for values not in its domain

callerConx(c8) =???

Before applying a function, check if the arg is in its domains
J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 11 / 23

A motivating Case Study

Modelling the state space

Req Each connection involves one/several subscribers (called)

Subsc Conx

calledConx

s1

s3

s2

s4

ca

cb

cc

cd

We need a partial surjective function to specify
J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 12 / 23

A motivating Case Study

Modelling the state space

Subsc Conx

calledConx

s1

s3

s2

s4

ca

cb

cc

cd

Conx Subsc

callerConx

ca

cb

cc

cd

s1

s3

s2

s4

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 13 / 23

A motivating Case Study

Modelling the state space

Subsc Conx

calledConx

s1

s3

s2

s4

ca

cb

cc

cd

The called subscribers in a connec-
tion:

calledConx ∈ Subsc↔ Conx

But, every connection should
have callee

ran(calledConx) = conx

How to get the called:

calledConx−1[{ca}] = {s3, s2}

if ca ∈ Conx

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 14 / 23

A motivating Case Study

Modelling: analysis of the evolution of the system

S0init call S1 S2 SE
calling subsc avail finished

In each state, we have a set of connections/subscribers.
At the beginning, a connection is created by a subscriber.
Then the connection becomes asked (ie waiting for resources =
involved subscribers)
Then the connections move from asked to ongoing when the
subscribers are availalabe.

From the set modeling point of view, we use subset relations.

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 15 / 23

A motivating Case Study

Modelling: analysis of the evolution of the system

Conx

askedCons

ongoing

Conx all the connections

↓

askedConx asked connections

↓

ongoingConx ongogoing.

↓

termination

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 16 / 23

A motivating Case Study

Modelling the system properties

REQ. A subscriber should not be involved in more than one ongoing
connection.

The subscribers called/involved in a connection ce:

calledConx−1(ce)

The subscribers involved in a set of connection startedConx:

calledConx−1[startedConx]

Hence, if we have some connections in ongoingConx then⋂
ce∈ongoingCnx

calledConx−1(ce) = {}

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 17 / 23

A motivating Case Study

Modelling the system properties

Safety The ongoing connections do not share called subscribers

The subscribers called in a connection is : calledConx−1(ce)

Hence, if we have some connections in ongoingConx then

(ongoingConx/ = {})⇒ (
⋂

ce∈ongoingCnx

calledConx−1(ce) = {})

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 18 / 23

A motivating Case Study

Modelling the system properties

REQ. A connection cannot be in the waiting state, if any of its called
are not involved in an already ongoing connection.

waitingConx = askedConx − ongoingConx

Safety active subscribers set contains some of the waiting subscribers

calledConx−1[startedConx]∩(calledConx−1[askedConx−ongoingConx]) , {}

+ Consequence: an asked connection is moved to ongoing if only all
of its called subscribers are available (not involved in other ongoing
connections): a guard of an event.

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 19 / 23

A motivating Case Study

Structuring in Event B (with AtelierB 4.2)

SYSTEM
ConnectMgr

SETS
CONNECTION ; SUBSCRIBER /* the needed sets */

ABSTRACT VARIABLES
...

INVARIANT
... /* properties of variables */

* ���� The properties of the system �����-*/
/* Safety SAF1, SAF2, ... */

INITIALISATION
...

END

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 20 / 23

A motivating Case Study

Structuring in Event B

. . .(continued)
EVENTS

newSubscriber = ... /* add a new subscriber ns */
; initiateConnection = ...

/* the initiation of a connection by sa, which calls some ss*/
; res ← participantsConx = ...

/* to get the participants(called) to a connection: caller
+ called */
; startConnection = ... /* start one of the waiting connection,

which does not have a subscriber already involved elsewhere
*/
; endConnection = ... /* end one of the ongoing connections
*/
END

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 21 / 23

A motivating Case Study

Further study

Study of liveness properties using ProB
Simulation of the system
Refinement into code
· · ·

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 22 / 23

A motivating Case Study

Conclusion

We have seen
a simple example of algorithmic development (GCD)
a more complex example of analysis and modelling with Event B

This gives a quick overview of the B method.

We will then focus on the study and the practice of B.

J. Christian Attiogbé (Nantes, November 2018) Modelling and verification with B Method 23 / 23

	Outline
	A First Example: GCD
	A motivating Case Study

