Modelling and verification with B Method
with Event B

J. Christian Attiogbé

Nantes, November 2018

LABORATOIRE
) DES SCIENCES
p DU NUMERIQUE
DE NANTES
AAAMY

UNIVERSITE DE NANTES

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 1/23

Outline

Plan

a A First Example: GCD

e A motivating Case Study

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 2/23

A First Example: GCD

The GCD Example

Formal development
mathematical model — programming model J

lllustration: From an abstract machine to its refinement into code.

ged(x,y)isd|[xmodd=0Aymodd=0
A Y other divisors dx d > dx
A Y other divisors dy d > dy

Refinement = Development method = design
J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 3/23

A First Example: GCD

Constructing the GCD: abstract machine

MACHINE
pgcdl /* the GCD of two naturals */
/% gcd(x,y) isd | xmod d =0 A ymodd=0
A Y other divisors dx d > dx
A Y other divisors dy d > dy */
OPERATIONS
rr <-- pged(xx,yy) = /* OUTPUT : rr ; INPUT xx, yy */

END

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 4/23

A First Example: GCD

Constructing the GCD: abstract machine

OPERATIONS
rr <-- pgcd(xx,yy) = /* specification of gcd */
PRE

xx : INT & xx >= 1 & xx < MAXINT
& yy : INT & yy >= 1 & yy < MAXINT
THEN
ANY dd WHERE
dd : INT
& (xx - (xx/dd)*dd) 0 /* d is a divisor of x */
& (yy - (yy/dd)*dd) O /¥ d is a divisor of y */
/* and the other common divisors are < d */
& !dx.((dx : INT & dx < MAXINT
& (xx- (xx/dx)*dx) = 0 & (yy-(yy/dx)*dx)=0) => dx < dd)
THEN rr := dd
END
END

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 5/23

A First Example: GCD

Constructing the GCD: refinement

REFINEMENT /* refinement of ...*/
pgcdl_R1

REFINES pgcdl /* the former machine */

OPERATIONS

rr <-- pgcd (xx, yy) = /* the interface is not changed */
BEGIN

. Body of the refined operation
END
END

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 6/23

A First Example: GCD

Constructing the GCD: refinement

rr <-- pgcd (xx, yy) = /* the refined operation */
VAR cd, rx, ry, cr IN
cd :=1
; WHILE (cd < xx & cd < yy) DO

; X = XX - (xx/cd)*cd ; ry :=yy - (yy/cd)*cd
IF (rx =0 & ry = 0)

THEN /* cd divids x and y; possible GCD */

cr := cd /* possible rr */
END
; cd :=cd + 1 ; /* searching a greater one */
INVARIANT

xX : INT & yy : INT & rx : INT & rx < MAXINT

& ry : INT & ry < MAXINT & cd < MAXINT

& xx = cr*(xx/cr) + rx & yy = cr*(y/cr) + ry
VARIANT

xx - cd
END

; I'r = Cr
END

PN €

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 7/23

A motivating Case Study

Case study: inter-process interactions manag. system

Figure: Interaction between processus

@ Read the requirements document

@ Analysis of the requirements document
@ Modelling of the system

@ Development of the system

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method

PN G
8/23

A motivating Case Study

Modelling the data

Given the sets SUBSCRIBER, CONNECTION

Connections € CONNECTION subscribers € SUBSCRIBER

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 9/23

A motivating Case Study

Modelling the state space

Req | Each connection has one caller, which has only one connection

Conx Subsc

callerConx

We need a total injective function to specify that.

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 10/23

A motivating Case Study

Modelling
Each element in the domain of callerConx has one image:

callerConx : Conx > Subsc

(ca,51) € callerConx ; (cp,s4) € callerConx; - -
callerConx(cy) = s4 callerConx(c,) = 51

the reverse is defined callerConx"'(s4) = ¢,

@« the function is not defined for values not in its domain

callerConx(cg) =277

Before applying a function, check if the arg is in its domains

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 11/23

A motivating Case Study

Modelling the state space

Req | Each connection involves one/several subscribers (called)

Subsc Conx

\;\ 44/

S

calledConx

We need a partial surjective function to specify

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 12/23

A motivating Case Study

Modelling the state space

Subsc Conx

callerConx

calledConx

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 13/23

A motivating Case Study

Modelling the state space

The called subscribers in a connec-
Subsc Conx tion:

calledConx € Subsc < Conx

'i
A\

/h

But, every connection should
have callee

ran(calledConx) = conx
How to get the called:
calledConx[{c,}] = {s3, 52}

calledConx _
if ¢, € Conx

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 14/23

A motivating Case Study

Modelling: analysis of the evolution of the system

calling subsc avail finished
init call —(SO >@ >‘ >@

@ In each state, we have a set of connections/subscribers.
@ At the beginning, a connection is created by a subscriber.

@ Then the connection becomes asked (ie waiting for resources =
involved subscribers)

@ Then the connections move from asked to ongoing when the
subscribers are availalabe.

From the set modeling point of view, we use subset relations.

O

)
|

ul
!

PN

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 15/23

A motivating Case Study

Modelling: analysis of the evolution of the system

Conx all the connections

askedCons

l

askedConx asked connections

1

ongoingConx ongogoing.

l

termination

O
)
|
ul
!

PN

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 16/23

A motivating Case Study

Modelling the system properties

REQ. A subscriber should not be involved in more than one ongoing
connection. }

The subscribers called/involved in a connection ce:
calledConx ™ (ce)
The subscribers involved in a set of connection startedConx:
calledConx~[startedConx]

Hence, if we have some connections in ongoingConx then

ﬂ calledConx™*(ce) = {)

ceeongoingCnx

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 17/23

A motivating Case Study

Modelling the system properties

Safety | The ongoing connections do not share called subscribers

The subscribers called in a connection is : calledConx~1(ce)

Hence, if we have some connections in ongoingConx then

(ongoingConx/ = {}) = (ﬂ calledConx_l(ce) =1{}) J

cecongoingCnx

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 18/23

A motivating Case Study

Modelling the system properties

REQ. A connection cannot be in the waiting state, if any of its called
are not involved in an already ongoing connection. J

waitingConx = askedConx — ongoingConx

Safety | active subscribers set contains some of the waiting subscribers

calledConx‘l[startedConx]ﬂ(calledConx‘l[askedConx—ongoingConx]) 5 {}J

= Consequence: an asked connection is moved to ongoing if only all
of its called subscribers are available (not involved in other ongoing
connections): a guard of an event.

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 19/23

A motivating Case Study

Structuring in Event B (with AtelierB 4.2)

SYSTEM

ConnectMgr
SETS

CONNECTION ; SUBSCRIBER /* the needed sets */
ABSTRACT VARIABLES

INVARIANT

... /* properties of variables */
* -—-- The properties of the system ------ * /
/* Safety SAF1l, SAF2, ... */
INITIALISATION
END

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 20/23

A motivating Case Study

Structuring in Event B

. (continued)
EVENTS
newSubscriber = ... /* add a new subscriber ns */
: initiateConnection =

/* the initiation of a connection by sa, which calls some ss*/
; res « participantsConx =
/* to get the participants(called) to a connection: caller
+ called */
; startConnection = ... /* start one of the waiting connection,
which does not have a subscriber already involved elsewhere

e
”

; endConnection = ... /* end one of the ongoing connections
END
J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 21/23
A motivating Case Study
Further study

@ Study of liveness properties using ProB
@ Simulation of the system

@ Refinement into code

Q .-

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 22/23

A motivating Case Study

Conclusion

We have seen
@ a simple example of algorithmic development (GCD)
@ a more complex example of analysis and modelling with Event B

This gives a quick overview of the B method.

We will then focus on the study and the practice of B.

J. Christian Attiogbé (Nantes, November 201¢ Modelling and verification with B Method 23/23

	Outline
	A First Example: GCD
	A motivating Case Study

