
Formal Software Engineering
GL Formel

J. Christian Attiogbé

Master Alma, Novembre 2018

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 1 / 100

Plan

1 Motivating Examples (if I have time)

2 Background - SWE Landscape
Formal Methods: Introduction
Inside Formal Methods and Applications
Formal Software Development Methods (a summary)
Construction of Computer Systems
A few definitions

3 Break with some examples

4 First order Logic

5 Logic Reasoning

6 Sets and relations and typing

7 Hoare Logic

8 Properties Specification
System Properties: terminology
LTL and CTL

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 2 / 100

About me: Teaching at IUT & UFR Sciences - Research at LS2N

Dpt Info IUT

Modélisation de données,

Bases de données,

Algèbre linéaire

Modélisation et programmation de systèmes répartis

Dpt Info UFR Sciences

Formal Software Engineering (Construction formelle de logiciels)

LS2N- UMR 6004 / Université de Nantes - CNRS - ECN - IMTA

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 3 / 100

AeLoS Team LS2N

Figure: Pôles de recherche du LS2N

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 4 / 100

AeLoS Team - LS2N

Research Topics

Construction of Correct Architecture and Software

Modelling, Verification, Refinement, Semantics

Distributed Systems (services, components, architectures, properties)

Contact the team members for various internship projects, PhD projects, ...

AeLoS Team Members

P. André, G. Ardourel, C. Attiogbé, B. Delahaye, A. Lanoix, M. Oussalah,
J. Rocheteau, + PhD Students + Postdocs + internship students (you
can join us!)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 5 / 100

Presentation of this Course (24h)

Formal modelling and verification of software
(the only way amenable to prove software correctness)

Part 1 - by Claude Jard (˜ 12 hours)
Concurrency and Semantic Models ;
Petri Nets/Romeo (model-checking), Timed Models/Uppaal
(model-checking).

Part 2 - by Christian Attiogbé (˜ 12 hours)
Correct Construction with B Method, Event-B
Atelier B/Rodin (theorem-proving).

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 6 / 100

Presentation of this Course (24h)

Forecast Agenda

Dates Part 1 Part 2
C. Jard C. Attiogbé

31/10 CJ
07/11 CJ
14/11 CJ

21/11 CA
28/11 CA
05/12 CA

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 7 / 100

About you - Motivations for this course

MASTER level ⇒ Managing industrial projects (computer systems)
in various domains,
with variable size (small · · · big)
Complex CS projects ⇒ Methods, Techniques, Tools

Analysis Methods,

Design & Verification Methods,

Development/Implementation Methods.

You probably already know some programming languages, semi-formal
methods, [FM?]

Are you confortable with large CS projects, difficult problems, (what about
the future)... ?

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 8 / 100

12h! - Rythm

Figure: Drumatic! (big-drum-purdue)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 9 / 100

Motivating Examples (if I have time)

Example: Web services interoperability (WS-AT)

Interoperability of services in distributed applications.
In distributed applications several services cooperate to achieve common goals.
Pbm: How to build such interoperable, distributed applications with coordinated
joint works? in an asynchronous context.
Web services tie together a large number of participants (they are services)
forming large distributed computational units called activities. These activities are
complex due to many parameters: interaction between participants, they can take
long time...
To face the complexity, a framework to coordinate the activities is needed (it is
the objective of WSCOOR, oasis). It enables participants to reach a consistent
agreement on the outcome of distributed activities.
Several protocols have been proposed as basis for the interaction between Web
services.

For example WS-Atomic Transaction (WS AT) contains protocols which are

mechanisms to create activities, join into them, and reach common agreement on

the outcome of joint operations.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 10 / 100

Motivating Examples (if I have time)

Example: Web services interoperability (WS-AT)

Def: An activity is a set of actions spaning multiple services but with a common
goal (classical ex: resa).
The activities that require the ACID (atomic, consistent, isolated, and durable)
properties of transactions are users of WS-Atomic Transaction.
An initiator creates/initiates an activity, and communicates its context to other
applications. The other applications can register to participate in the activity. A
coordinator manages all the participants of an activity. The coordinator at some
point can decide to abort or to try to commit the transaction. Therefore it
initiates (preparation phase) a vote to which all the participants participate.
When there is a common positive agreement, it can commit the outcome
(commit phase) of the trasaction (all or nothing).

Required Safety Property: to guarantee that the initiator and the participants

agree on whether the transaction is committed or aborted.

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 11 / 100

Motivating Examples (if I have time)

Example 1: a formal specification

MACHINE /* Sorting: a set of naturals -> seq. of natural */

Tri

CONSTANTS

tride /* defining a function */

PROPERTIES

tride : FIN(NAT) ---> seq(NAT) &

(ran(tride(ss)) = ss &

%(ii,jj).(ii : dom(tride(ss)) & jj : dom(tride(ss)) &

ii < jj =>

(tride(ss))(ii) < (tride(ss))(jj))))

END

Emphasize abstraction = what (not how)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 12 / 100

Motivating Examples (if I have time)

Example 2: a formal specification

system ProdCons /* Model */
sets

DATA ;
STATE = {empty, full}

variables
buffer, bufferstate, bufferc

invariant
bufferstate ∈ STATE

∧ buffer ∈ DATA ∧ bufferc ∈ DATA
initialization

bufferstate := empty
‖ buffer :∈ DATA
‖ bufferc :∈ DATA

end

Emphasize abstraction

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 13 / 100

Motivating Examples (if I have time)

Example 2: (continued)

ProdCons (continued)...

events
produce =̂ /* when buffer empty */

any dd where
dd ∈ DATA ∧ bufferstate = empty

then
buffer := dd ‖
bufferstate := full

end ;
consume =̂ /* when buffer is full */

select bufferstate = full
then

bufferc := buffer ‖
bufferstate := empty

end

end

Emphasize abstraction = what (not how)
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 14 / 100

Motivating Examples (if I have time)

Examples of properties

Always an unique process in CS
card (activeProc) = 1

A process cannot be simultane-
ously active and blocked

activeProc ∩ clockedProc = ∅

... ...

+ The use of invariant properties

Safety properties: nothing bad should happen

Liveness properties: something good eventually happens
More generally, one uses Modal Logics.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 15 / 100

Background - SWE Landscape

Categories/Natures of Software Systems

Nature of software systems what Features? which Methods?

sequential

autonomous (transformational)

centralised

reactive

real-time

parallel

parallel and concurrent

distributed

embedded

communication protocols
. . .

⇒ various types of software systems, various methods

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 16 / 100

Background - SWE Landscape

Semi-Formal Methods

Examples of semi-formal methods

Functional Analysis (SA..., SADT),

Structured Analysis (SA, SSADM), SA-RT,

Entity-Relationship (Entités/Associations): Merise, Axiale,

JSD/JSP,

Object-Oriented Analysis, OMT, UML, Objectory Process (Ericsson,
1987), rational unified process (RUP),

Software Architecture (System Level ; Top-Down approach),

etc

Pros and Cons

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 17 / 100

Background - SWE Landscape

Need of Formal Methods

Need of rigorous methods for some specific domains:

Security, Certification, Cost, Maintenance

ITSEC (Information Technology Security Evaluation Criteria) requires
the use of formal methods

Failure of (one flight) of ARIANE!, failure of a Pentium series, etc

Environments which are dangerous for humans (nuclear, chemistry,
marine, etc)

Embedded Systems (vehicles, home equipments, etc)

Automata (medical domain, etc)

etc

Pros and cons

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 18 / 100

Background - SWE Landscape

Industry [already] adopts FM!

Difficulties for industries: Market Pressure, High costs, · · ·
BUT, there are numerous success stories

Proof of a C compiler (Coq, Xavier Leroy, 2011) !!!

Design of a Real-Time Operating System (TLA+)
E. Verhulst, R.T. Boute, J.M. Sampaio Faria, B.H.C Sputh, V. Mezhuyev,
Formal Development of a Network-Centric RTOS, 2011

Airbus (Astrée, Scade/Simulink), Aerospace

NASA (PVS, shuttle, ...), Boeing (...)

Proof of IEEE 1395 Firewire Protocols (Spin, PVS, B, +++ ; 2004+)

Proof of control systems (B, Siemens)

Proof of circuit (STMicroelectronics)

· · ·

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 19 / 100

Background - SWE Landscape

Industry [already] adopts FM!

· · ·

BOS barrier protecting the harbor of Rotterdam (Z, 2001)

Proof of microcode and software (Intel)

Proof of Communication Protocols (IO Automata, 1993+)

· · ·

The complexity of current computer systems discourages empirical
methods.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 20 / 100

Background - SWE Landscape

Why formal methods?

Some systems need to be correct (=the right behaviours, no bugs)

Examples

Health, Medecine, avionics, transportation, security, army/defense,
home automation, wide distributed systems, embedded systems, etc
⇒ all critical systems or complex systems

Fomal methods are part of a solution

Model the system, using mathematics (= formal notations)
Reason on the system à priori, using mathematics (=rigorous
reasoning).
to MASTER complexity

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 21 / 100

Background - SWE Landscape

Introduction: Prove the correction of a software

Build correctly a software or
Prove the correction of a software S via its model.

The model of the software : M

The properties : P

M |= P
proof depending on the structure of the model
ex: prove that P is true in all the (reachable) states of M
(if M is a state model)

Anyway, you need a formal model; and/or rigorous software dev. methods.
Do you know some?

+ Learn how to build M , P and how to prove (Modelling + Verification)
(using dedicated tools or not).

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 22 / 100

Background - SWE Landscape

What to learn?

Figure: Truss styles (from caudilltrussandmetal.com)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 23 / 100

Background - SWE Landscape

Overview of formal methods and approaches

Deductive approaches (logic-based)
Build a logic model of the system
Prove the properties of a software/system, from the stated logical
specifications = demonstrate a theorem from axioms; theorem proving
Trends: Correct-by-construction (model, prove, refine until code)

State exploration approaches (automata-based)
Build a state-based model of the system
Check some properties in all the possible states of the
software/systems
model-checking; State-explosion;
Symbolic model-checking; Statistic mdel-checking; ...

Static analysis (à posteriori, on the code/abstraction) with abstract
interpretation, ...

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 24 / 100

Background - SWE Landscape Formal Methods: Introduction

Examples of models (you already know)

Logics models (First Order, Higher Order, Modal)

Axiomatic/algebraic models (equation systems)

State-based models (Automata, LTS, graphs)
Finite State Machines (Mealy, Moore, ...), Petri nets, Communicating
processes,...
+ various aspects: time, data, signals, probabilities

Various classes of models and systems

Data-intensive models

Synchronous models - Asynchronous models

Timed Systems - Probabilistic (extension of Tansition systems)

Reactive systems, Embedded systems

...

+ We will learn some aspects in this course.
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 25 / 100

Background - SWE Landscape Formal Methods: Introduction

Features of Formal Methods

Formal methods ⇒ use rigorous approach to

guaranty of software correction with respect to specifications,

decrease/remove errors, and disfunctionning,

make it easy the maintenance and the evolution.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 26 / 100

Background - SWE Landscape Formal Methods: Introduction

Methods in Engineering

Construction methods of computer systems
A few analogies:
Building Engineering (Génie civil)
→ Architecture, schemes/blueprints (design), computings, construction
(implementation)
Physics
→ Observations, modelling/study of models, implementation

Computer Science (Informatique)

Requirement Analysis (observations?)

Modelling - study of models,

Design and Implementation of systems.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 27 / 100

Background - SWE Landscape Formal Methods: Introduction

Preliminaries

Various approaches of formal methods:

à postériori : First, one implements (programming paradigm) and
then one verifies that the produced program is correct
→ proof systems, testing, model-checking

à priori : One builds correctly the system
→ Development methods (refinement, synthesis),
proof systems

Several formal methods (languages, proof systems, methods)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 28 / 100

Background - SWE Landscape Formal Methods: Introduction

Preliminaries

Top-down approach: by decomposition

Global analysis (system study, system engineering)
Software Architecture

↓

Implementation of components

Direct Programming or
Formal Development

Bottom-up approach: composition of elementary components.

Study of available components,
Composition, reuse.

In all cases (approaches), make use of formal methods for

Study of systems

Study and construction of components/software

Formal framework for reasoning, analysis, development.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 29 / 100

Background - SWE Landscape Inside Formal Methods and Applications

What are inside formal methods?

Logics

Algebra

Discrete Mathematics

Set Theory

Automata Theory

Type Theory

Refinement Theory

...

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 30 / 100

Background - SWE Landscape Inside Formal Methods and Applications

Examples of a few industrial applications

with the B Method (J-R. Abrial)
GEC ALSTHOM, SNCF and MATRA Transport (now Siemens)

Railway Speed Control System (KVS for SNCF)

Line A of the Paris RER - SACEM (signaling, speed control)

Calcutta Metro (CTDC)

Montreal Metro (CTDC), Marseille, Bel horizonte

Météor (line 14, of Paris Metro, without human driver)

Landing doors (portes pallières) in Metro stations

Old people insurance, in French Sécurité Sociale

CICS of IBM (major restructuring of a transactional, about 800000
lines of code)

B and VDM are used in financial domain softwares, BULL UK

Many other systems with PVS, Coq, SPIN, Petri Nets, Lotos, etc

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 31 / 100

Background - SWE Landscape Inside Formal Methods and Applications

Example of the Railway Speed Control System (Metro)

Data acquisition (sensors, converters, etc),

Computation/decision,

Orders sent to physical devices (speed slowing system, braking
system),

Embedding of the software in the global system of the train.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 32 / 100

Background - SWE Landscape Inside Formal Methods and Applications

Other used approaches, along the time

Some of them are equipped with tools and adopted by industries

LOTOS, SDL (european Standard)
algebric approach + communicating processes

Isabelle (Germany), PVS (USA)

MEC/AltaRica (Université de Bordeaux + industries)

Classical Logics: First order Logic, Hoare Logic, etc
(Why, Frama-C, Krakatoa (Java), Key,...)

Non-classical Logics, modal logics

Coq, High-Order Logics, type theory

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 33 / 100

Background - SWE Landscape Formal Software Development Methods (a summary)

Foundation of formal approaches (proof)

Interpretation of the Curry-Howard’s Isomorphism:

Proof
Axioms

Theorems
equiv. to Development

Specifications

Programs

♥♥♥

→ Proof assistants needed! not only editors and compilers

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 34 / 100

Background - SWE Landscape Construction of Computer Systems

Overview of Software Construction

Analyse

Développement

Spécification informelle
(cahier de charges)

Spécification
[formelle]

Système

(logiciel+matériel)

Validation

Communication, contrat

Développeur

/utilisateur

Validation/spécification

(diverses méthodes)

Utilisateur, développeur, spécifieur

Figure: Issue of system development de system

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 35 / 100

Background - SWE Landscape Construction of Computer Systems

Overview of Software Construction

Figure: A life cycle of formal software construction

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 36 / 100

Background - SWE Landscape Construction of Computer Systems

Use of Formal Methods

→ Not always approriate:

A hammer to kill a fly

depending on the needs

Professional environment

Available experiments?

Industrial context

Delay, costs, productivity

Certification

Requirements of clients.

Figure: Heavy structure (from

clevelandbridge.com)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 37 / 100

Background - SWE Landscape Construction of Computer Systems

Which approach to use?

→ Several parameters:

Designer/implementor of big systems,

Designer/implementor of small (home) systems,

Features of systems to be implemented,

Available experiments,

. . .

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 38 / 100

Background - SWE Landscape Construction of Computer Systems

Categories/Natures of Software Systems

Nature of software/systems what Features? which Methods?

sequential

autonomous (transformational)

centralised

reactive

real-time

parallel

parallel and concurrent

distributed

embedded

communication protocols
. . .

⇒ various types of software systems, various methods

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 39 / 100

Background - SWE Landscape Construction of Computer Systems

A few difficult points

To describe precisely the intended system specification

To build correctly the sofware development

To be sure that the constructed software is correct with respect to the
needs

Maintenance/Evolution of the system.

Each project is unique

Nature of complex systems → multifacets, modular

Several methods, including:

Semi-formal methods
Formal Methods (integrated) → to deal with complex systems.

⇒ mastering several methods

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 40 / 100

Background - SWE Landscape Construction of Computer Systems

A few difficult points

To describe precisely the intended system specification

To build correctly the sofware development

To be sure that the constructed software is correct with respect to the
needs

Maintenance/Evolution of the system.

Each project is unique

Nature of complex systems → multifacets, modular

Several methods, including:

Semi-formal methods
Formal Methods (integrated) → to deal with complex systems.

⇒ mastering several methods

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 40 / 100

Background - SWE Landscape A few definitions

A few definitions

Modelling:
Hoare: A scientific theory is formalised as a mathematical model of reality,
from which can be deduced or calculated the observable properties and of
a well-defined class of processes in the physical world.
There are two main notions of models in computer science.

1 Model = an approximation of the reality by a mathematical structure.
An object O is a model of a reality R, if O allows one to answer all
the questions about R.

In Mathematics, Physics, ... models are built with equation systems using

quantities (masses, energy, ...) or hypothetic laws.

⇒ State exploration, simulation

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 41 / 100

Background - SWE Landscape A few definitions

A few definitions (continued)

2 Logics, theory of models
A model of a theory T is a structure in which the axioms of T are
valid.
A structure S is a model of a theory T, or S satisfies T if all formula
of T is satisfied in S.
The reality is a model of a theory!
First Order Theory = any set of logic formula in a given language (precisely

defined).

Model as an interpretation of a specification - an algebra as a model
of an algebraic specification (or an axiomatisation).

⇒ deductive approach, theorem proving

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 42 / 100

Background - SWE Landscape A few definitions

A few definitions (continued)

These two notions of model are encountered in the model-oriented (or
state-oriented) and property-oriented approaches of Soft. Eng.
In current use,

model = (archetype), what serves or is used for imitation to
reproduce orther instances.

model = (paradigm), declination model, conjugation model, etc

model = (reference), . . .

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 43 / 100

Background - SWE Landscape A few definitions

A few definitions (continued)

Semiformal Method =

Graphical Language [+ formal]
(precise syntax and unprecise semantics) and

Various analysis tools.

→ Combination of languages/methods/techniques that do not all have a
precise semantics.
Examples : JSD, OMT, OOX, UML, Unified Process, RUP

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 44 / 100

Background - SWE Landscape A few definitions

Interest and Limitations of Semi-formal Methods

SADT, SA-RT, SSADM, . . .

JSD-JSP,

Merise, Axial, . . .

OOA, OMT, UML, Unified Process, RUP

. . .

The problem analysis is performed.
It is a positive contribution, although insufficient.
But, the problem is sided.
→ impossible to reason formally on the intended system.
→ there can be ambiguities and errors.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 45 / 100

Background - SWE Landscape A few definitions

A few definitions (continued)

Formal Method =

Formal Language (precise syntax and precise semantics) and

Proof or formal reasoning system.

Examples: FSM, Petri, Z, CCS, CSP, HOL, Coq, PVS, B, ...

Formal Development =

systematic transformation of specifications into programs using
predefined laws/rules.
Synthesis, Refinement
Need Provers/assistants : Isabelle, Why, Coq, ...

Examples: B Method, Perfect, Escher C,...

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 46 / 100

Background - SWE Landscape A few definitions

A few definitions (continued)

Verification: to show that a system (S) is correct with respect to some
properties (P)

S |= P

Validation: to show that a system (S) is correct with respect to some
informal properties (the needs)

S ∼ Sinformal

Formal reasoning : Consists in applying a formal system to a
specification.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 47 / 100

Background - SWE Landscape A few definitions

Examples of theory

Set theory: it is based on a set of axioms (Bourbaki, Cantor, Zermelo, ...).
The objects of this theory are called sets.
The classe of the sets is called the universe.
The axioms of the set theory (of Zermelo+Fraenkel) are the following:

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 48 / 100

Background - SWE Landscape A few definitions

Examples of theory (continued)

Axiom of the empty set: there exists a set which does not contain any
element: it is the empty set.

Extensionality Axiom: two sets are equal if and only if they contain
exactly the same elements.

Union Axiom: the union of sets is a set.

Axiom of the set of parts: given a set E, there exists a set P suchat
that a set F is member of P if F is a part of E.

Axiom of replacing/substitution schema(Fraenkel, 1922) : When one
defines a function with the formula of the set theory, the elements for
which this function verifies a given property are also a set.

Moreover, to these axioms is added, the axiom of infinite: there exists an
infinte ordinal.
ZFC = ZF + axiom of choice

Axiom of choice: Given a family of disjoint sets, if we consider one
element of each set of the family, then one builds another set.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 49 / 100

Background - SWE Landscape A few definitions

Some references

Jan Van Leeuwen, Handbooks of Formal Models and Semantics, 1990

J. Wing, A Case Study in Model Checking Software Systems, SCP, 1997

Mana & Pnueli; de Roever et Al.;

E. Clarke, J. Wing, Formal Methods: State of the Art and Future Directions,
CMU, 2006

L. Lamport, numerous documents!

André Arnod, sémantique des processus communicants

J-F. Monin, Introduction aux méthodes formelles. Hermès, 2000

Success Stories
www.fm4industry.org/index.php/DEPLOY_Success_Stories,
www.fm4industry.org/index.php/Deploying_Event-B_in_an_

Industrial_Microprocessor_Development

and Dijkstra, Hoare,...

Wing, Hehner, Monin, Holloway, · · ·
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 50 / 100

Break with some examples

Quick itroduction with formal modelling examples.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 51 / 100

www.fm4industry.org/index.php/DEPLOY_Success_Stories
www.fm4industry.org/index.php/Deploying_Event-B_in_an_Industrial_Microprocessor_Development
www.fm4industry.org/index.php/Deploying_Event-B_in_an_Industrial_Microprocessor_Development

First order Logic

Logics: Modelling and reasoning
10 min.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 52 / 100

First order Logic

Structure of the brain: logical part

Figure: Brain organisation (from www.mindfulnet.org/page8.htm)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 53 / 100

First order Logic

First Order Logic

A proposition is a sentence named P, Q, E... with a value TRUE or FALSE;
the construction of a proposition is made with the following grammar:

prop ::= P ,Q ,E , . . .
| prop∧prop
| ¬ prop
| prop⇒prop

Parentheses can be used if necessary.
Other operators (logical connectors) : ∨, ≡
The semantics of a proposition (with the connectors) is given by a truth
table (Exercice).

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 54 / 100

First order Logic

Examples of Proposition

A cat with a hat is a Lion

Peter rides a bycicle

0 > 3

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 55 / 100

First order Logic

Predicates

Propositional calculus deals with : absolute truth.
Predicate calculus deals with : relative truth,
it is an extension of propositional calculus.

x > 2

x ∈ IN ⇒ x ≥ 0

Two kinds of variables are used in predicates: free variables and bound
variables which are introduced with quantifiers.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 56 / 100

First order Logic

How to use predicates

Substitution

[x := 5](x ∈ IN ⇒ x ≥ 0)

(5 ∈ IN ⇒ 5 ≥ 0)

[x := elephant](BigEars(x)⇒ African(x))

Quantification

∀x .BigEars(x) =⇒ African(x),

∀x .(Animal (x) ∧ BigEars(x)) =⇒ African(x)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 57 / 100

First order Logic

Construction of predicates

Predicat ::= Predicat ⇒ Predicat
| Predicat ∧ Predicat
| ¬ Predicat
| ∀Variable.Predicat
| [Variable := Expression]Predicat
| Expression = Expression

Expression ::= Variable
| [Variable := Expression]Expression

Variable ::= Identifier

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 58 / 100

First order Logic

Usage of Logics

for modelling : predicates

predicate = formula to be proved

P ∧ Q

P ⇒ Q

0 < 3

{0, 3} ⊂ {0, 4, 8, 3}

for reasoning : sequents

H `P

H : Hypotheses
P : conjecture

}
predicates

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 59 / 100

First order Logic

Inference rules of propositional calculus

∧ intr
HYP ` P HYP ` Q

HYP ` P ∧ Q use backward to decom-
pose into simple subgoals
with the same hypothe-
ses

∧ elim
HYP ` P ∧ Q

HYP ` P HYP ` Q

⇒ intr
HYP , P ` Q

HYP ` P ⇒ Q deduction rule

⇒ elim
HYP ` P ⇒ Q

HYP , P ` Q anti-deduction

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 60 / 100

First order Logic

Modus Ponens HYP ` P HYP ` P ⇒ Q
HYP ` Q

Contradiction HYP , ¬ Q ` P HYP , ¬ Q ` ¬ P
HYP ` Q first rule for ¬

HYP , Q ` P HYP , Q ` ¬ P
HYP ` ¬ Q second rule for

¬

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 61 / 100

Logic Reasoning

Reasonning

Figure: To mimic brain complexity (from ehealing.us)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 62 / 100

Logic Reasoning

Reasoning

with a meta-language

Inference rules
An inference rule links sequents and its defines a valid step of a proof.

An inference rule has the following shape:∑
1,
∑

2, . . . ,
∑

n∑
The sequents

∑
1,
∑

2, . . . ,
∑

n are called antecedents, and the sequent∑
is called consequent.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 63 / 100

Logic Reasoning

Reasoning (continued)

Proof principle
To prove a sequent, one uses the inference rules

- as derivation rules : forward rule application,
- as reduction rules : backward rule application.

Implementation

Theorem to prove / Inference
To prove a theorem

P ` Q

one transforms it into inference rule

H ` P

H ` Q

Proofs : forward or backward - tactics

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 64 / 100

Sets and relations and typing

SETS: Modelling and reasoning
30 min.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 65 / 100

Sets and relations and typing

Structuring

Figure: Amazing steel structure (from clsteel)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 66 / 100

Sets and relations and typing

Sets and typing

Predefined Sets (work as types)
BOOL, CHAR,
INTEGER (Z), NAT (N), NAT1 (N*) ,
STRING

0

5
3

2

8

Cartesian Product E × F

Figure: Sets of cows, birds

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 67 / 100

Sets and relations and typing

Sets and typing

The set of subsets (powerset) of E P(E)
written POW(E)

user defined
abstract sets,
enumerated sets

Figure: Set of sets of birds

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 68 / 100

Sets and relations and typing

Set Theory Language

The standard set operators
E , F and T are sets, x a member of F

Description Notation Ascii

union E ∪ F E \/ F
intersection E ∩ F E /\ F
membership x ∈ F x : F

difference E \ F E - F

inclusion E ⊆ F E <: F

+ generalised Union and intersection
+ quantified Union et intersection

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 69 / 100

Sets and relations and typing

Set Theory Language

In ascii notation, the negation is written with /.

Description Notation Ascii

not member x < F x /: F

non inclusion E * F E /<: F

non equality E , F E /= F

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 70 / 100

Sets and relations and typing

Generalised Union (à la B)

an operator to achieve the generalised union of well-formed set
expressions.
S ∈ P(P(T))
⇒

union(S) = {x | x ∈ T ∧ ∃ u .(u ∈ S ∧ x ∈ u)}
Example

union({{aa , ee, ff }, {bb, cc, gg}, {dd , ee, uu , cc}})

= {aa , ee,ff , bb, cc, gg , dd , uu}

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 71 / 100

Sets and relations and typing

Quantified Union

an operator to achieve the quantified union of well-formed set
expressions.
∀ x .(x ∈ S ⇒ E ⊆ T)
⇒⋃

x .(x ∈ S | E) = {y | y ∈ T ∧ ∃ x .(x ∈ S ∧ y ∈ E)}

Exemple

UNION (x).(x ∈ {1, 2, 3} | {y | y ∈ NAT ∧ y = x ∗ x })

= {1} ∪ {4} ∪ {9} = {1, 4, 9}

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 72 / 100

Sets and relations and typing

Generalised Intersection (à la B)

an operator to achieve the generalised intersection of of well-formed
set expressions.
S ∈ P(P(T))
⇒

inter (S) = {x | x ∈ T ∧ ∀ u .(u ∈ S ⇒ x ∈ u)}
Example
inter ({{aa , ee, ff , cc}, {bb, cc, gg}, {dd , ee, uu , cc}} = {cc}

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 73 / 100

Sets and relations and typing

Quantified Intersection (à la B)

an operator to achieve the quantified intersection of of well-formed
set expressions.
∀ x .(x ∈ S ⇒ E ⊆ T)
⇒⋂

x .(x ∈ S | E)
= {y | y ∈ T ∧ ∀ x .(x ∈ S ⇒ y ∈ E)}

Example
INTER(x).(x ∈ {1, 2, 3, 4} | {y | y ∈ {1, 2, 3, 4, 5} ∧ y > x })

= inter ({{1, 2, 3, 4, 5}, {2, 3, 4, 5}, {3, 4, 5}, {4, 5}})

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 74 / 100

Sets and relations and typing

Relations

RELATIONS

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 75 / 100

Sets and relations and typing

Recurrence Relations

Figure: Amazing recurrence relation (from devanmatthews.files.wordpress.com)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 76 / 100

Sets and relations and typing

Relations: definition, vocabulary

A relation r over D and A is a subset of the cartesian product D ×A
it is noted r : D ↔ A or r ⊆ D ×A
r is a set of couples (d , a) also denoted by d 7→ a

0

5

3

2

8

1

2

3

4
5

codomaine

Ens d'ArrivéeEns de Départ

domaine

D A

r

Figure: Euler-Venn diagram of r

r = {(1, 3), (2, 2), (3, 5), (4, 5)} ou
r = {1 7→3, 2 7→2, 37→5, 47→4}

dom(r) = {1, 2, 3, 4}
ran(r) = {3, 5, 2}

Domaine : domaine Codomaine : range

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 77 / 100

Sets and relations and typing

Relations: definition, vocabulary

S and T are sets.
An element of r : S ↔ T is a couple.
A element s of S can have several images in T .

Description Notation Ascii

relation r : S ↔ T r : S <–> T
domain dom(r) ⊆ S dom(r) <: S
range ran(r) ⊆ T ran(r) <: T
composition r ;s r;s
composition r(s) r ◦ s r(s)
identity id (S) id(S)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 78 / 100

Sets and relations and typing

Relations (continued)

Robots

Consider a plant with a set of polyvalent articulated robots, for welding,
painting, punching, perforating, etc. Ho to model? know the available
painting robots? and how many? ...

competency

r1

r2

r3

r4

weld

paint

punch

perf

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 79 / 100

Sets and relations and typing

Relations (continued)

Robots

Consider a plant with a set of polyvalent articulated robots, for welding,
painting, punching, perforating, etc. A robot can be assigned at most only
one task at time. But one task among its competencies

given abstract sets: BOT , TASK
robots ⊆ BOT
tasks ⊆ TASK

assignR : robots → tasks

assignR ⊆ competency

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 80 / 100

Sets and relations and typing

Relations (continued)

to build new relation r ′ from r : S ↔ T

Description Notation Ascii

domain restrictition S / r S <| r
range restriction r . T r |> T
domain antirestriction S -/ r S <<| r
range antirestriction r -. T r |>> T
inverse r∼ r ∼
relationnelle image r [S] r[S]
overiding r1 ⊕ r2 r1 <+ r2

direct product of rel. r1 ⊗ r2 r1 >< r2
closure closure(r) closure(r)
reflexive trans. closure closure1(r) closure1(r)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 81 / 100

Sets and relations and typing

Functions

FUNCTIONS

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 82 / 100

Sets and relations and typing

Functions

S and T are sets. f : S 7→T a function
Unlike in a relation, an element of S can have at most one image via f .

example

Consider a set of tasks to be achieved by a set of robots.
A robot can be assigned at most only one task at time.

robots ⊆ BOT
tasks ⊆ TASK
sched : robots 7→ tasks // partial function

What do we need if the requirements say All tasks should be assigned ?.

sched : robots 7→→ tasks // partial sujective function

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 83 / 100

Sets and relations and typing

Functions

S and T are sets. f : S 7→T a function
Unlike in a relation, an element of S can have at most one image via f in
T .

Description Notation Ascii

partial function f : S 7→ T f : S +-> T
total function f : S → T f : S - -> T
partial injection f : S 7�→ T f : S >+-> T
total injection f : S �→ T f : S >–> T
partial surjection f : S 7→→ T f : S +->> T
total surjection f : S →→ T f : S - ->> T
total bijection f : S �→→ T f : S >->> T
lambda abstraction %x .(P | E)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 84 / 100

Sets and relations and typing

Powerful mathematical structures

SETS (with ∈,×,∪,∩, ...)

↑

Relations

↑

Functions

↑

Sequences

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 85 / 100

Hoare Logic

Hoare Logic (Reminder?): Fundamentals of reasoning

Hoare Logic
10 min.

Figure: Basic engineering (from ak2.picdn.net)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 86 / 100

Hoare Logic

Floyd-Hoare Logic

Elementary to reason on the correction of programs
Consider a pseudo-programming language, described by the grammar

E ::= N | E1 + E2 | E1 − E2 | E1 × E2 | · · ·

B ::= E1 = E2 | E1 ≤ E2 | · · ·

C ::= SKIP

| V := E
| C1 ; C2

| IF B THEN C1 ELSE C2

| WHILE B DO C

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 87 / 100

Hoare Logic

Floyd-Hoare Logic

The Hoare triple denotes the partial correction of a statement.

P a formula of the first order logic,
` P means P can be deducted from the laws of logics and arithmetics.

` {P } C {Q} means that {P } C {Q} is

either an instance of the schema of the axioms A1, A2 (above)
or is deductible by a sequence of applications of the rules Ri .

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 88 / 100

Hoare Logic

Axioms and rules of Hoare logic

A1: Axiom of SKIP. For any formula P

` {P } SKIP {P }

A2: Substitution Axiom. P a formula, V a programme variable,
E nd expression

` {P [E/V]} V := E {P }

(P [E/V] denotes the result of the substitution of E to the
free occurrences of V in P .)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 89 / 100

Hoare Logic

Axioms and rules of Hoare logic

R1: rule of the precondition (strengthening - renforcement)

` P ′ ⇒ P ` {P } C {Q}

` {P ′} C {Q}

R2: rule of the postcondition (weakening - affaiblissement)

` {P } C {Q} ` Q ⇒ Q ′

` {P } C {Q ′}

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 90 / 100

Hoare Logic

Axioms and rules of Hoare logic

R3: rule of the sequence

` {P } C1 {Q} ` {Q} C2 {R}

` {P } C1;C2 {R}

R4: rule of the IF structure

` {P ∧ B } C1 {Q} ` {P∧ ¬ B } C2 {Q}

` {P } IF B THEN C1 ELSE C2 {Q}

R5: rule of the WHILE structure

` {P ∧ B } C1 {Q}

` {P } WHILE B DO C1 {Q ∧ ¬ B }

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 91 / 100

Properties Specification

System Properties (6 min.)

Figure: Protect your system! (from medievart.com)
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 92 / 100

Properties Specification System Properties: terminology

Kripke Structure (Saul Kripke, 1960)

Directed graph used as internal representation of software. Each state has
a name/label and a list of propositions in P which are valid in this state.

(S ,Sinit ,Sfinal , δ : S ↔ S , σ : S → P)

p q

p

p,q q,s

1 2

3

4 5

Behaviour, Run, trace

Trace = sequence of states (their names) linked in the system.
s1.s2. · · · .si .si+1. · · · | (si , sj) ∈ δ

From a trace, we compute the sequence of set of valid propositions
(possibly infinite!)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 93 / 100

Properties Specification System Properties: terminology

Safety/liveness - Safety

Safety property

Safety property expresses that “something bad must not happen”

Examples:

The index values never over the bounds.

Only one vehicle will be in the tunnel (critical section)

The program never loose the requests

Predicate Logic(+ set theory): logic for specifying liveness properties

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 94 / 100

Properties Specification System Properties: terminology

Safety/liveness - Liveness

Liveness property

Liveness property expresses that “something good must happen” (in the
future runs)

Examples:

The user will get her access after the attempts of connection.

All requests will be treated before the server closing

Temporal Logic: logic for specifying properties over time
(Behavior of a finite-state system)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 95 / 100

Properties Specification System Properties: terminology

System Properties: Safety or Liveness

The majority of properties are safety properties

Liveness properties are often considered as more complicated safety
properties (for instance with real-time response constraints)

Learn how to specify both; it depends on the project under work.

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 96 / 100

Properties Specification LTL and CTL

Linear-Time Logic (LTL) - Pnueli, during 1970

Used to describe properties on individual execution traces
(succession of dates)
each moment in time has a well-defined successor moment. (function)
Semantics: a set of (execution) traces

p

p

p

p,q

Figure: Pêche à la ligne (from

madfred-angling.com)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 97 / 100

Properties Specification LTL and CTL

Computation Tree Logic (CTL) - Branchng Time family

Used to describe properties on several execution traces simultaneously
(using quantifiers on the traces).
from a state, reason about multiple possible time. (relations)
Semantics: defined on terms of states

p

p

p

p,q

p,q

p,q

. . .

Figure: Pêche au filet (from

esoxiste.com)

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 98 / 100

Properties Specification LTL and CTL

Tools and References

Model checking:
exponential in the size of LTL formula ; linear for TCL formula.
For both LTL, CTL, model checking is linear in the size of the state graph.

Some model checking tools:
SPIN, SMV, BLAST (Turing Award 2007: Clarke, Emerson, Siffakis)
BLAST, CADP, UPPAAL, PRISM, CBMC
UPPAAL-SMC, PLASMA, ...

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 99 / 100

Properties Specification LTL and CTL

Tools and References

Hubert Garavel, Formal Methods for Safe and Secure Computers
Systems https://www.bsi.bund.de/SharedDocs/Downloads/DE/

BSI/Publikationen/Studien/formal_methods_study_875/

formal_methods_study_875.pdf?__blob=publicationFile,
2013

Jeannette M. Wing and Mandan Vaziri-FarahaniA Case Study in
Model Checking Software Systems
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/venari/www/scp.html

Jeannette Wing, Formal Methods: State of the Art and Future
Directions,
https://www.cs.cmu.edu/afs/cs/project/calder/www/acm.html

Principles of Model Checking, Christel Baier and Joost-Pieter Katoen.
MIT Press, 2008.

Model Checking Javier, Esparza, Stephan MERTZ
https://members.loria.fr/SMerz/talks/mc-tutorial.pdf

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering Master Alma, Novembre 2018 100 / 100

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/formal_methods_study_875/formal_methods_study_875.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/formal_methods_study_875/formal_methods_study_875.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/formal_methods_study_875/formal_methods_study_875.pdf?__blob=publicationFile
https://members.loria.fr/SMerz/talks/mc-tutorial.pdf

	Motivating Examples (if I have time)
	Background - SWE Landscape
	Formal Methods: Introduction
	Inside Formal Methods and Applications
	Formal Software Development Methods (a summary)
	Construction of Computer Systems
	A few definitions

	Break with some examples
	First order Logic
	Logic Reasoning
	Sets and relations and typing
	Hoare Logic
	Properties Specification
	System Properties: terminology
	LTL and CTL

