
Specification and verification of embedded systems
with Event B

J. Christian Attiogbé

Master ALMA

November 2018

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 1 / 55

Outline

Plan

1 Introduction

2 Modelling with Event-B

3 Examples - Case studies

4 Case study: readers-writers

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 2 / 55

Introduction

Event-B: Some References

- Modelling in Event-B: System and Software Engineering,
J-R. Abrial, Cambridge, 2010

- Modelling and proof of a Tree-structured File System. Damchoom,
Kriangsak and Butler, Michael and Abrial, Jean-Raymond, 2008.

- Applying Event and Machine Decomposition to a Flash-Based Filestore in
Event-B. Damchoom, Kriangsak and Butler, Michael; 2009.

- Faultless Systems: Yes We Can!, Jean-Raymond Abrial, 2009

- Modelling an Aircraft Landing System in Event-B,
Dominique Méry, Neeraj Kumar Singh, 2014

- Closed-Loop Modelling of Cardiac Pacemaker and Heart , Dominique Méry,
Neeraj Kumar Singh, 2012

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 3 / 55

Introduction

Event B Specification Approach

Correct-by-construction: build correctly the systems
(abstraction, modelling, refinement, composition/decomposition, proof)

Some hints to formal methods:
Formal methods are rigorous engineering tools.
Formal methods are means to build executable code from
software requirement documents (informal, natural language).
Requirement Documents (provided by clients) should be
rewritten after analysis and understanding into Reference
Document (where every thing is made clear and properly labelled
for traceability).

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 4 / 55

Introduction

B Method and Event B

Event-B is an extension of the B-method (J-R. Abrial).
It is devoted

for system engineering (both hardware and software), top-down
approach
for specifying and reasoning about complex systems : concurrent
and reactive systems.

Event-B comes with a new modelling framework called Rodin.
(like Atelier B tool for the classical B)
The Rodin platform is an Eclipse-based open and extensible tool
for B model specification and verification.
It integrates various plugins: B Model editors, proof-obligation
generator, provers, model-checkers, UML transformers, etc

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 5 / 55

Introduction

Event B Modelling and its dissemination

Yet used in various case studies and industrial projects:
Train signalling system
Mechanical press system
Access control system
Air traffic information system
Filestore system
Distributed programs
Sequential programs
Cardiac Pacemaker
etc

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 6 / 55

Introduction

Event B Modelling: principles

Observe the behaviour of any system; what matters?
A set of changes of its states.
But, the observation distance does matter!
(the details may be observed or not: parachutist paradigm)
The observation focus does matter!
(the observed changes are not the same)
Different points of view = several abstractions.

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 7 / 55

Introduction

Remind B Specification Approach

State space = correct states

wrong states

op ti

op tj op tk

{x,y,z,... | Invariant(x,y,...)}

Figure: Do it right with B

VARIABLES
x, y, z, ...

INARIANT
Inv(x,y,z, ...)

OPERATIONS
ti = ...
tj = ...
tk = ...

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 8 / 55

Introduction

B Method: general development approach

Machine

Raffinement

Raffinement

Spécification informelle
(cahier de charges)

raffinement prouvé

raffinement prouvé

Développement B

implantation

Code exéc.

Analyse Système

Modélisation

formelle

Structuration

Figure: Development process with B

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 9 / 55

Introduction

Event B Specification Approach

Event B Specification: start with Abstract system or Abstract model

An abstract system is a mathematical model of an asynchronous
system behaviour

System behaviour: described by events which are observed!

Events are guarded actions/substitutions

Event occurrences involve a State-transition model.

A system model is a state-based model equipped with events

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 10 / 55

Introduction

Event B Development Structuring

Start with an Abstract system
(or abstract model)

Refinement of data and
events
The parachutist paradigm /
microscope paradigm (JR
Abrial)

Decomposition (of a system
into sub-systems, Hw, Sw)

. . .

. . .

refines

refines

refines

decomposition

As

Figure: Event B Design
structure

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 11 / 55

Introduction

B Abstract System

Variables

Predicate

Events

SYSTEM
SETS ...
VARIABLES

...
INVARIANT

... predicate
INITIALISATION

...
EVENTS

...
END

but structured more efficiently using Contexts and machines.

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 12 / 55

Introduction

Remind! Capturing the correct state space and events

State space = correct states

wrong states

op ti

op tj op tk

{x,y,z,... | Invariant(x,y,...)}

Figure: Events should preseve correct states

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 13 / 55

Introduction

Capturing a system behaviour - Events

The behaviour of a discrete system is a sequence of changes
(system transitions).
The changes may be internal or enabled by external signals.
Each event describes the occurrence of a change in the discrete
system under modelisation.
Event B uses Guards and Actions [Dijkstra]

event = when Conditions then Effects

But, the behaviour of a system may/should be captured gradually.

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 14 / 55

Introduction

Formal Description of Events

An event has one of the following general forms (Fig. 5)

name =̂ /* event name */
when /* the guard */

P(gcv)
then

GS(gcv)
end

(WHEN/SELECT Form)

name =̂ /* event name */
any bv where

P(bv, gcv)
then

GS(bv, gcv)
end

(ANY Form)

Figure: General forms of events

gcv denotes the global constants and variables of the abstract;
bv denotes the local bound variables of the event;
P(bv, gcv) a predicate.
J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 15 / 55

Introduction

Formal Description of Events

An event without guard has the following form:

name =̂ /* event name */
begin

GS(gcv)
end

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 16 / 55

Introduction

Abstract System (or a model, or a machine)

The guard of an event with the WHEN form is: P(gcv).
The guard of an event with the ANY form is: ∃(bv).P(bv, gcv).
The WHEN form is a particular case of the other.
The action associated to an event is modeled with a generalized
substitution using the variables accessible to the event:
GS(bv, gcv).

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 17 / 55

Introduction

Abstract System : Semantics and Consistency

An abstract system describes a mathematical model that simulates the
behaviour of a system.
Its semantics arises from the invariant and is ensured by proof
obligations (PO).
The consistency of the model is established by such proof obligations.

Consistency of an event B model
PO: the initialisation establishes the invariant
PO: each event of the abstract system preserves the invariant of
the model

I(gcv) the invariant and GS(bv, gcv) the generalized substitution
modelling the event action.

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 18 / 55

Introduction

Abstract System : Semantics and Consistency

the initialisation establishes the invariant;

[U]Inv

each event preserves the invariant:
In the case of an event with the ANY form, the proof obligation is:

I(gcv) ∧ P(bv, gcv) ∧ prdv(Se)⇒ [GS(bv, gcv)]I(gcv)

Moreover the events (e) terminate:

I(Gcv) ∧ eGuard⇒ fis(eBody)

(note eBody = Se)

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 19 / 55

Introduction

Abstract System : Semantics and Consistency

The predicate fis(S) expresses that S does not establish False:

fis(S)⇔ ¬ [S]False

ie
I(Gcv) ∧ eGuard⇒ ¬ [S]False

The predicate prdv(S) is the before-after predicate of the substitution S ;
it relates the values of state variables just before (v) and just after (v’)
the substitution S, also written BAe(v, v′).
The prdv(any x where P(x, v) then v := S(x, v) end) is:

∃x.(P(x, v) ∧ v′ = S(x, v))

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 20 / 55

Introduction

Example: producer/consumer

Features: Concurrency and synchronization

produce (adata) consume(data)

buffer : DATA
bufferstate : {empty, full}

Producer Consumer

Figure: An overview of a producer-consumer

Concurrent running of a process consumer which retrieves a data
from a buffer filled by another process producer.
The consumer cannot retrieve an empty buffer and the producer
cannot fill in a buffer already full.

An event-driven model of the system is as follows:

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 21 / 55

Introduction

Example : producer/consumer

Machine ProdCons /* the abstract model */
sets

DATA ; STATE = {empty, full}
variables buffer, bufferstate, bufferc
invariants

bufferstate ∈ STATE ∧ buffer ∈ DATA ∧ bufferc ∈ DATA
initialization

bufferstate := empty ‖ buffer :∈ DATA ‖ bufferc :∈ DATA
events

produce =̂ /* if buffer empty */
any dd where dd ∈ DATA ∧ bufferstate = empty
then buffer := dd ‖ bufferstate := full
end ;

consume =̂ /* if buffer is full */
select bufferstate = full
then bufferc := buffer ‖ bufferstate := empty
end

end

Figure: A Producer-Consumer Abstract System
J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 22 / 55

Introduction

Structuring Event-B Models

An event-B model is structured with
Contexts that contain carrier sets, axioms and theorems (seen by
various machines)
Machines which see the contexts and define a state space (static
part: variables + labelled invariants) and a dynamic part made of
some events.
A context may be extended; a machine may be refined.

CONTEXT

SETS
CONSTANTS
PROPERTIES

MODEL/MACHINE

VARIABLES
INVARIANTS
EVENTS

EXTENDS

CONTEXT MODEL

REFINES

SEES

SEES

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 23 / 55

Introduction

Refinement: principles

Data refinement
(as usually: new variables + properties; binding invariant)
Event Refinement (extended):

Strengthening guards (unlike with Classical B)
More variables are introduced with their properties.
Each event of the concrete system refines an event of the
abstraction.
Introduction of new events which refine skip, and use new variables.

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 24 / 55

Introduction

Refinement: principles

Let A with Invariant: I(av)
evta =̂ /* Abs. ev. */

when P(av)
then GS(av)
end

avec prdv(...) = Ba(av, av’)

Refined with: Invariant J(av,cv)
evtr =̂ /* Conc. ev. */

when Q(cv)
then GS(cv)
end

avec prdv(...) = Bc(cv,cv’)

Proof obligation:

I(av) ∧ J(av, cv) ∧ Q(cv) ∧ Bc(cv, cv′)⇒ ∃cv′.(Ba(av, av′) ∧ J(av′, cv′))

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 25 / 55

Introduction

Event B Tools

First generation tools
Translation into classical B
B4free, Click’n’Prove

New generation tools: DataBase, Eclipse Plugins, ...
Rodin (From sveral EU Projects: Matisse, Deploy, etc)

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 26 / 55

Modelling with Event-B

Refinement: structuring models

Refinement= development technique: various refinement strategies.

Horizontal refinement (feature augmentation)
From a small and abstract to a larger abstract model.
Details are gradually introduced in an abstract model in order to make
it more precise
(wrt to requirements).

. . .
refines

A0
refines

As

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 27 / 55

Modelling with Event-B

Refinement: structuring models

Vertical refinement: From abstrat to more concrete models
Details are gradually introduced in an abstract model
The specifier introduces new variables and makes some choices
Events may be split : event decomposition
machines may be split too: machine decomposition

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 28 / 55

Modelling with Event-B

Vertical Refinement: machine decomposition

. . .

. . .

refines

refines

refines

decomposition

As

Figure: Vertical refinement with machine decomposition

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 29 / 55

Modelling with Event-B

Vertical Refinement: event decomposition

A coarse grain event is analysed and described in a more detailed
(fine grain) way.
Think about the transfer of a file via a network.

A given change consists of:
start by sub-change...;
follow by sub-change...;
end by sub-change...;
Hence, at least one sub-change (an event), refines the abstract
event.

refined by

absEvent

conEvent

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 30 / 55

Modelling with Event-B

Machine Decomposition: structuring models

A coarse grain model is analysed and described in a more detailed
(fine grain) way.
Think about a system involving software and physical devices.

A given model is made of variables that model purely physical
devices, and events are associated only to these variables
The splitting is based on variables splitting (but not always
straightforward).
Divide and conquer: a small model is more tractable than a huge
one.

Decomposition enables one to break complexity, to structure and
develop more easily.

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 31 / 55

Modelling with Event-B

Machine Decomposition: structuring models

Machine variables and events are partitioned into sub-machines.

Decomposition with Abrial’s style (shared variables): the
sub-machines may interact with each other via shared variables.
Shared variables are duplicated, new external-events are
introduced in each machine that has a shared variable in order to
ensure consistency of changes.
Decomposition with Butler’s style: the variables are not shared; an
event which uses variables in separate machines, is shared (then
separated-duplicated).
The sub-machines may interact with each other via
synchronisation over shared parameterised events.

Event-B Model Decomposition, C. Pascal(Systerel), R. Silva(Univ. of Southampton)

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 32 / 55

Examples - Case studies

Event-B Model - Example: File transfer protocol

Specification of a file transfer between two sites: a sender and a
receiver.

sender receiver

transfer

sender file

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 33 / 55

Examples - Case studies

Event-B Model - Example: File transfer protocol

sender receiver

transfer

sender file

virtually

1

2

3

4

5

collection of Data

A file is made of a set of data records.
From a very abstract level, the transfer is done instantaneously.

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 34 / 55

Examples - Case studies

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

Channel

+ acknowledge

But, a file is made of a set of data records which are to be transfered
through a channel.

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 35 / 55

Examples - Case studies

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

Channel

+ acknowledge

{ }1
2

From a more concrete level, the transfer is achieved step by step, one
record after the other.

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 36 / 55

Examples - Case studies

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

Channel

{ }1
2

1

3

2

receiver

AckChan
{ }1, 2

sendata
recvdata

sendAckrecvAck

There are some intermediary operations, to send data on the channel
from the sender side, to receive data from the channel from the
receiver side. In the same way acknowledgements are sent/received.
J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 37 / 55

Examples - Case studies

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

Channel

{ }1
2

1

3

2

receiver

AckChan
{ }1, 2, 3, 4, 5

sendata
recvdata

sendAckrecvAck

4

3

5

5

4

Only after all the intermediary operations, the transfer will be
completed.

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 38 / 55

Examples - Case studies

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

1

2

receiver

AckChan
{ }1, 2, 3, 4, 5

4

3

5

 transfer (now finished)

receiver file

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 39 / 55

Examples - Case studies

Event-B Model - Example: File transfer protocol

Senderfile = some data records = 1..nr→ DATA
{1 7→ data1, 2 7→ data2 , · · · }
A channel is a set of such data records.
At each time, the channel contains a part (set inclusion) of the
sender’s file
The receiver acknowledges the received records numbers.
The file transfer is completed when all the records are
acknowledged.
Failure: loss of data/ack in the channels.

We have the model!

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 40 / 55

Examples - Case studies

Event-B Model Example: File transfer protocol

MACHINE Transfer
SETS DATA
CONSTANTS nr /* file size : number of records
*/
PROPERTIES nr : NAT & nr > 1
VARIABLES
sf /* sender file */
, rf /* receiver file */

INVARIANT
& sf : 1..nr �> DATA /* all records of sf */
& rf : 1..nr +-> DATA /* probably part of
records of sf */
INITIALISATION
sf := {} || rf := {}

EVENTS
transf = /* instantaneous transfer, from far
way */
BEGIN
rf := sf
END

/* but, technically, we will need to anticipate
the intermediary events */
END

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 41 / 55

Examples - Case studies

Event-B Model Example: File transfer protocol

MACHINE Transfer
SETS DATA
CONSTANTS nr /* file size */
PROPERTIES nr : NAT & nr > 1
VARIABLES
sf /* sender file */
, rf /* receiver file */
INVARIANT
& sf : 1..nr �> DATA /* all records of sf */
& rf : 1..nr +-> DATA /* probably part of
records of sf */
INITIALISATION
sf := {} || rf := {}

EVENTS
transf = /* instantaneous transfer, from far
way */
BEGIN
rf := sf
END

/* the following events are introduced by
anticipation of the forthcoming gradual
refinement*/
; sendta = skip
; recdta = skip
; sendac = skip
; recvac = skip
/* the followings are events that simulate the
non-releiabiliy of channels */
; rmvData = skip
; rmvAck = skip
END

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 42 / 55

Examples - Case studies

Event-B Model Example: File transfer protocol

REFINEMENT
Transfer R1

REFINES Transfer

VARIABLES

cs /* current record to be sent */
, cr /* current record received */
, rf
, sf /* sender file */
, erf /* effectively received file */
, dataChan /* data channel */
, ackChan /* ack channel */
INVARIANT

cs : 1..nr+1 /* current to be sent */
& cr : 0..nr /* current received */
& cr <= cs /* current received is <= current
sent */
& cs <= cr+1 /* cr <= cs <= cr+1 */
& erf = (1..cr) <| sf
& dataChan <: (1..cs) <| sf
& ackChan <: 1..cr

INITIALISATION
cs := 1
|| cr := 0
|| rf := {}
|| sf := {}
|| erf := {}
|| dataChan := {}
|| ackChan := {}
EVENTS
transf =
WHEN
cs = (nr + 1) /* that is all cs are received
(last ack received) */
THEN
rf := erf /* not necessary, effective copy of
the received file in the receiver */
END

... (continued)
END

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 43 / 55

Examples - Case studies

Event-B Model Example: File transfer protocol

/* new events introduced (ie. we "forget" the
anticipation in the abstract model) */
; sendta =
WHEN
cs <= nr
THEN
dataChan(cs) := sf(cs)
/* now wait for the ack, before updating cs */
END

; recdta =
WHEN cr+1 : dom(dataChan)
THEN
erf(cr+1) := dataChan(cr+1)
|| cr := cr + 1 /* the next data to be received
*/
END

; sendac =
WHEN cr /= 0 /* send ack for the received cr
data */
/* may be observed repeatedly until the next
data */
THEN
ackChan := ackChan {cr}
END

recvac =
WHEN cs : ackChan /* ack for the already sent
cs */
THEN
cs := cs + 1 /* now the next to be sent */
END
/* Simulating non-relaibility of channels,
data/ack may be loss */
; rmvData =
ANY ii, dd WHERE
ii |->dd : dataChan
THEN
dataChan := dataChan - { ii|->dd }
END
;
rmvAck =
ANY ii WHERE
ii : ackChan
THEN
ackChan := ackChan - {ii}
END

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 44 / 55

Case study: readers-writers

Case Study : Multiprocess specification
(Readers/writers)

Description
Multiple processes: readers, writers
Shared resources between the processes
Several readers may read the resource
Only one writer at a time

Property:
Mutual exclusion between readers and writers
Improvement:
no starvation→ as a new property
(using refinements)

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 45 / 55

Case study: readers-writers

Multiprocess specification

MACHINE
readWrite2
SETS
WRITER /* set of writer processes */
; READER /* set of reader processes */

VARIABLES
writers /* current writers */
, activeWriter
, waitingWriters
, readers /* current readers */
, waitingReaders
, activeReaders /* we may have svrl readers simultan. */

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 46 / 55

Case study: readers-writers

Multiprocess specification

INVARIANT
writers <: WRITER
& activeWriter <: WRITER & card(activeWriter) <= 1
& waitingWriters <: WRITER
& writers /\ waitingWriters = {}
& activeWriter /\ waitingWriters = {}
& activeWriter /\ writers = {}
/* merge */
& readers <: READER
& waitingReaders <: READER
& activeReaders <: READER & card(activeReaders) >= 0
& readers /\ waitingReaders = {}
& activeReaders /\ waitingReaders = {}
& activeReaders /\ readers = {}
/*�����safety properties �����*/
& not((card(activeWriter) = 1)&(card(activeReaders) >= 1))

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 47 / 55

Case study: readers-writers

Multiprocess specification

INITIALISATION
activeWriter := {}
|| waitingWriters := {}
|| activeReaders := {}

|| readers :: POW(READER)
|| writers :: POW(WRITER)
|| waitingReaders := {}

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 48 / 55

Case study: readers-writers

Multiprocess specification

want2write = /* observed when a process wants to write */
ANY ww WHERE
ww : writers
& ww /: waitingWriters
& ww /: activeWriter
THEN
waitingWriters := waitingWriters \/ {ww}
|| writers := writers - {ww}
END
;
writing =
ANY ww WHERE
ww : waitingWriters
& activeReaders = {} & activeWriter = {}
THEN
activeWriter := {ww}
|| waitingWriters := waitingWriters - {ww}
END

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 49 / 55

Case study: readers-writers

Multiprocess specification

endWriting =
ANY ww WHERE
ww : activeWriter
THEN
writers := writers\/ {ww}
|| activeWriter := {}
END
;
want2read =
ANY rr WHERE
rr : readers
& rr /: waitingReaders
& rr /: activeReaders
THEN
waitingReaders := waitingReaders \/ {rr}
|| readers := readers - {rr}
END

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 50 / 55

Case study: readers-writers

Multiprocess specification

reading =
ANY rr WHERE
rr : waitingReaders
& activeWriter = {}
THEN
activeReaders := activeReaders\/ {rr}
|| waitingReaders := waitingReaders - {rr}
END
;
endReading =
/* one of the active readers finishes and leaves
the competition to the shared resources */
ANY rr WHERE
rr : activeReaders
THEN
activeReaders := activeReaders - {rr}
|| readers := readers \/ {rr}
END

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 51 / 55

Case study: readers-writers

Multiprocess specification

newWriter = /* a new Writer */
ANY ww
WHERE ww : WRITER
& ww /: (writers \/ waitingWriters \/ activeWriter)
THEN
writers := writers \/ {ww}
END
; leaveWriters = /* a writer leaves the group */
ANY ww
WHERE
ww : writers
THEN
writers := writers - {ww}
END

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 52 / 55

Case study: readers-writers

Multiprocess specification

newReader = /* a new reader joins the readers */
ANY rr WHERE
rr : READER
& rr /: (readers\/waitingReaders \/activeReaders)
THEN
readers := readers \/ {rr}
END
; leaveReader =
ANY rr WHERE
rr : readers & card(readers) > 1
THEN
readers := readers - {rr}
END

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 53 / 55

Case study: readers-writers

Conclusion

Initiation rapide à B et Event-B
Reste à pratiquer, pratiquer, et pratiquer encore

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 54 / 55

Case study: readers-writers

Event-B: Some References

- Modelling in Event-B: System and Software Engineering,
J-R. Abrial, Cambridge, 2010

- Modelling and proof of a Tree-structured File System. Damchoom,
Kriangsak and Butler, Michael and Abrial, Jean-Raymond, 2008.

- Applying Event and Machine Decomposition to a Flash-Based Filestore in
Event-B. Damchoom, Kriangsak and Butler, Michael; 2009.

- Faultless Systems: Yes We Can!, Jean-Raymond Abrial, 2009

- Modelling an Aircraft Landing System in Event-B,
Dominique Méry, Neeraj Kumar Singh, 2014

- Closed-Loop Modelling of Cardiac Pacemaker and Heart , Dominique Méry,
Neeraj Kumar Singh, 2012

J. Christian Attiogbé (Master ALMA) Specification and verification of embedded systems November 2018 55 / 55

	Outline
	Introduction
	Modelling with Event-B
	Examples - Case studies
	Case study: readers-writers

