

Master ALMA (M1) - XMS1IE313 **Vérification et Preuves formelles** C. Attiogbé - 2025/2026

TD/TP - Introduction à la modélisation formelle (en B)

1 Exercice : révisions de Logique du premier ordre (FOL)

Proposition, prédicats, définitions, assertions

Formaliser les énoncés suivant en logique

- 1. (a) Il y a un entier naturel entre 3 et 314. (b) Il y a un entier y dont l'entier x est le carré.
- 2. Tous les entiers entre l'entier i et l'entier j sont positifs.
- 3. Il y a une vache qui pèse plus de 800 kg (explicitez vos hypothèses sur les types/ensembles).
- 4. Les entiers ne sont pas des vaches.
- 5. S'il pleut je prends mon ciré jaune.
- 6. La contraposé de Chaque fois qu'il pleut je prends mon ciré jaune
- 7. La négation de Chaque fois qu'il pleut je prends mon ciré jaune.
- 8. Il n'y a aucun entier premier entre les entiers i et k. (on suppose donné le prédicat premier(x) qui exprime que "x est premier")
- 9. La température *t* doit toujours être entre 9 et 25.
- 10. S'il fait jour la température *t* doit être entre 17 et 23 et s'il fait nuit la température doit être entre 16 et 19.
- 11. Le pgcd de deux entiers *a* et *b* est un entier *d* qui divise *a* et qui divise *b* et qui est plus grand que tous les autres diviseurs communs à *a* et *b*.
- 12. Deux nombres entiers a et b sont dits premiers entre eux (ou *copremiers*) lorsqu'ils n'admettent aucun diviseur commun, sinon l'unité (1). Par exemple 5 et 12.
- 13. Il y a un drone affecté à chaque zone.
- 14. Toute zone dispose d'un drone.
- 15. Chaque zone dispose d'un drone qui n'est pas affecté à une autre zone.
- 16. En mode pilotage automatique, la vitesse ne doit pas dépasser 60 km/h.
- 17. En considérons T comme un "tableau" à n éléments (entiers relatifs, exprimer que T contient un en entier et son opposé (ou inverse).
- 18. Exprimez le triplet de Hoare pour une opération de calcul de la division de n par m.
- 19. Dans un programme (I_1 ; I_2 ; I_3) on veut vérifier que l'assertion R est vraie après chaque instruction. Donner la forme du triplet de Hoare après chaque instruction. Faites des hypothèses sur les préconditions.

Notation symbolique	notation ASCII (pour la Méthode B)
$\exists xx.(xx \in T \ \land \ F(xx))$	#xx.(xx:T & F(xx))
$\forall xx. ((xx \in T \land P(xx)) \Rightarrow Q(xx))$!xx.((xx:T & P(xx)) ==> (Q(xx)))

2 Exercice : révisions de Logique + Théorie des ensembles

Rappels de notation :

$$x \in E$$
 $E \cup F$ $E \cap F$ $E \subset F$ $E \setminus F$ $\mathcal{P}(E)$ {} \emptyset $r : E \leftrightarrow F$ $f : E \to F$

Expression et formalisation d'énoncés.

- 1. Donnez en extension l'ensemble C des couleurs élémentaires.
- 2. Donnez en extension l'ensemble *J* des jours de la semaine.
- 3. Donnez le diagramme de Venn de C
- 4. Donnez en extension le produit cartésien $C \times J$?
- 5. Combien d'éléments possède le produit cartésien $C \times J$?
- 6. Combien d'éléments possède $\mathcal{P}(E)$? Calculer $\mathcal{P}(C)$
- 7. Définissez à l'aide du prédicat P(x), l'ensemble E_P dont les éléments ont la propriété P(x). Donnez un exemple avec l'ensemble C dont les éléments sont des carrés d'entier.
- 8. Donnez en compréhension l'ensemble des numéros de processus dont le temps d'exécution a dépassé t secondes. Faites les abstractions nécessaires.
- 9. Exprimer que les entiers naturels sont des entiers relatifs mais pas l'inverse.
- 10. Soient deux sous-ensembles E_P , et E_Q donnés en compréhension avec resp. P(x) et Q(x), dans un univers E. Comment peut-on exprimer que E_P et E_Q sont égaux, avec une notation ensembliste, puis avec des opérateurs logiques?
- 11. Soient *P* l'ensemble des processus dans un système d'exploitation et *Proc* un sousensemble de *P*; soit *N* un sous-ensemble des entiers, représentant des identifiants (de processus);
- 12. Donnez un diagramme sagittal exprimant une relation entre *P* et *N*
- 13. Exprimez en logique et/ou avec des relations (théorie des ensembles) vous pouvez préciser les hypothèses si nécessaire :
 - (a) Chaque élément de P a un seul identifiant dans N
 - (b) Tous les éléments de P n'ont pas d'identifiant (dans N).
 - (c) Les identifiants sont uniques pour les processus.
 - (d) Tous les éléments de *P* sont images.
 - (e) L'identification des processus est une bijection entre P et N
- 14. Soient A un ensemble d'animaux; $C = \{herbivore, carnivore\}$ des familles et P un ensemble exprimant des propriétés : $P = \{plate, enbeche, courte, terne\}$.

On définit une fonction $cat : A \rightarrow C$ qui donne la catégorie de chaque animal de A. Comment peut-on exprimer en se servant de la fonction cat :

- (a) Tous les animaux carnivores?
- (b) les animaux à la fois carnivores et herbivores?

Proposez une façon de modéliser le fait que :

(c) chaque catégorie a une propriété f_d dans l'ensemble P; des formes de dents (canine ou incisive).

3 Exercice de modélisation

1. Soit la classification des animaux donnée dans la figure Fig. 1 Proposez une modélisation relationnelle permettant d'organiser des animaux, d'exprimer et d'utiliser leurs caractéristiques.

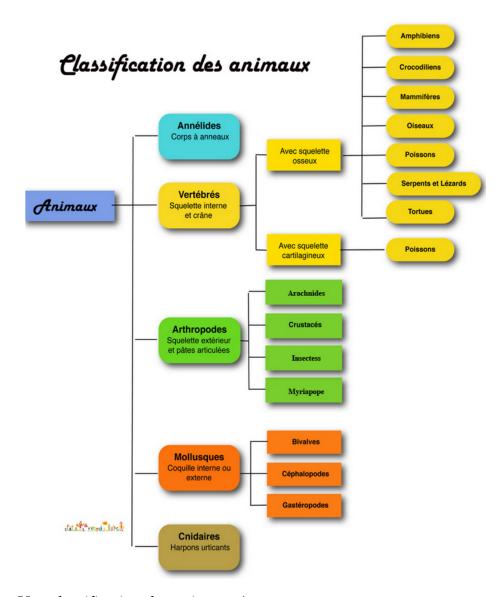


Figure 1 – Une classification des animaux (www.teteamodeler.com/ecologie/biologie/vivant)