ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266860206

Understanding Petri nets. Modeling techniques, analysis methods, case studies.
Translated from the German by the author

Book - July 2013

DOI: 10.1007/978-3-642-33278-4

CITATIONS READS
220 694
1 author:

@ W.Reisig
e !
4& Humboldt-Universitat zu Berlin
267 PUBLICATIONS 7,250 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project EP-BPM View project

All content following this page was uploaded by W. Reisig on 23 November 2020.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/266860206_Understanding_Petri_nets_Modeling_techniques_analysis_methods_case_studies_Translated_from_the_German_by_the_author?enrichId=rgreq-be195adc72a56f0d0ab7c067711075f8-XXX&enrichSource=Y292ZXJQYWdlOzI2Njg2MDIwNjtBUzo5NjA5NTI2NjA5MjIzNjhAMTYwNjEyMDM3NjMxMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/266860206_Understanding_Petri_nets_Modeling_techniques_analysis_methods_case_studies_Translated_from_the_German_by_the_author?enrichId=rgreq-be195adc72a56f0d0ab7c067711075f8-XXX&enrichSource=Y292ZXJQYWdlOzI2Njg2MDIwNjtBUzo5NjA5NTI2NjA5MjIzNjhAMTYwNjEyMDM3NjMxMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/EP-BPM?enrichId=rgreq-be195adc72a56f0d0ab7c067711075f8-XXX&enrichSource=Y292ZXJQYWdlOzI2Njg2MDIwNjtBUzo5NjA5NTI2NjA5MjIzNjhAMTYwNjEyMDM3NjMxMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-be195adc72a56f0d0ab7c067711075f8-XXX&enrichSource=Y292ZXJQYWdlOzI2Njg2MDIwNjtBUzo5NjA5NTI2NjA5MjIzNjhAMTYwNjEyMDM3NjMxMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/W_Reisig?enrichId=rgreq-be195adc72a56f0d0ab7c067711075f8-XXX&enrichSource=Y292ZXJQYWdlOzI2Njg2MDIwNjtBUzo5NjA5NTI2NjA5MjIzNjhAMTYwNjEyMDM3NjMxMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/W_Reisig?enrichId=rgreq-be195adc72a56f0d0ab7c067711075f8-XXX&enrichSource=Y292ZXJQYWdlOzI2Njg2MDIwNjtBUzo5NjA5NTI2NjA5MjIzNjhAMTYwNjEyMDM3NjMxMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Humboldt-Universitaet-zu-Berlin?enrichId=rgreq-be195adc72a56f0d0ab7c067711075f8-XXX&enrichSource=Y292ZXJQYWdlOzI2Njg2MDIwNjtBUzo5NjA5NTI2NjA5MjIzNjhAMTYwNjEyMDM3NjMxMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/W_Reisig?enrichId=rgreq-be195adc72a56f0d0ab7c067711075f8-XXX&enrichSource=Y292ZXJQYWdlOzI2Njg2MDIwNjtBUzo5NjA5NTI2NjA5MjIzNjhAMTYwNjEyMDM3NjMxMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/W_Reisig?enrichId=rgreq-be195adc72a56f0d0ab7c067711075f8-XXX&enrichSource=Y292ZXJQYWdlOzI2Njg2MDIwNjtBUzo5NjA5NTI2NjA5MjIzNjhAMTYwNjEyMDM3NjMxMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Petri Nets

Modeling Techniques, Analysis
Methods, Case Studies

Wolfgang Reisig

February 22, 2013



Zuerst einmal kommt es darauf an,
verstanden zu werden.

Theodor Fontane

Put it before them briefly so they will read it,

clearly so they will appreciate it,

picturesquely so they will remember it

and, above all, accurately so they will be guided by its light.

Joseph Pulitzer

Progress is possible only if

we train ourselves to think about programs
without thinking of them

as pieces of executable code.

E.W. Dijkstra

Computer Science

is no more about computers
than astronomy

is about telescopes.

E.W. Dijkstra



Carl Adam Petri (1926 — 2010)

1988 Officer’s Cross of the Order of Merit of the Federal RepubfiGermany
1988 Honorary professor at the University of Hamburg, Geyna
1989 Member of the Academia Europaea, London

1993 Konrad Zuse Medal of the German Informatics Societys@Bs&chatft fir
Informatik) for excellent achievements in computer scesnc

1997 Werner von Siemens Ring for distinguished achieveniem¢shnology and science
1997 Member of the New York Academy of Sciences

1999 Honorary doctorate of the University of Zaragoza

2003 Commander of the Order of the Netherlands Lion

2007 Gold Medal of Honor of the Academy of Transdisciplinaearning and
Advanced Studies

2009 |IEEE Computer Pioneer Award






Preface

Foreword

Dear reader:

The currently common graphic representation for nets ak wel
as the methodology of their refinement and abstraction was in
vented in August 1939 to visualize my knowledge about chem-
ical processes. | also devised a plan to analyze catalytic pr
cesses.

This plan failed due to the beginning of the Second World
War, because the necessary equipment was no longer aeailabl
So | had no other alternative but to study my invention on pa-
per.

In 1941, | was so excited about my father’s report on Konrad
Zuse’s programmable computer that | could not stop thinking
about it. However, it was not until the late 1950s that it lmeea
evident that the development of computer technology would
greatly influence our society.

It seemed to me that a theoretical framework was needed to
formulate and solve the basic problems that arose for the-str
ture and the sensible use of this computer technology — inde-
pendent from the current state of the technology, but inracco
dance with the laws of physics. | decided to lay the founatetio
of this framework. Indeed, | remembered my toy from 1939
and applied it to signals and bits, but formulated my results
predominantly in mathematical form to achieve a higher pece
tance of my dissertation on “Communication with Automata”
(original German: “Kommunikation mit Automaten”). (Only
after my exam, did | reintroduce the net graphics.)

My arguments were:

e The theory of computability is based on the Turing ma-
chine, consisting of an abstract automaton and an infinite



tape. While the automaton can be implemented by means
of a computer, the infinite tape cannot.

e To avoid a contradiction to the laws of physics (finite, in-
variant speed of light and the uncertainty principle), tie i
finite ribbon has to be replaced with two short shifting reg-
isters. Attached to the end of each register is a registér cel
factory that works at least as fast as it takes to access the
register.

e The cells of the register are only allowed to communicate
with their two neighbors, just as each transition can only
affect its immediate neighbors.

e That means that the computability theory current at that
time, with its global state changes, cannot be applied to the
kinds of distributed systems that the technology is devel-
oping towards. Trying to conceive the Internet as a single
automaton is simply not useful.

Since then, many others have helped to develop the net the-
ory of distributed systems into an established field of knowl
edge, with many computer tools for the study of system prop-
erties hidden within the graphical notation, like behaaiaon-
variants or the potential disassembly into components.

This book chooses the most important, most original, most
successful and most basic concepts and presents them compre
hensively. In doing so, it offers students and practitisnar
some cases even specialists of the field, an approach to or a
new view on distributed systems.

I wish this book a wide distribution and a long usage.
St. Augustin, Germany, January 2008

Oont, Qoo Gdeu



Preface

Petri Nets — An Introductiof63] is a slim book that was pub-
lished almost 30 years ago and was quickly translated into si
languages and sold several thousand copies. For a longitime,
was considered the standard reference for Petri nets.

Now it is time for a new introduction. Petri nets have been
further developed in unbelievably diverse directions. rsFi
model, then program” is a principle that increasingly domi-
nates software engineering, and Petri nets are a popular mod
eling technique.

Theoretical Computer Science
W.Brauer G.Rozenberg A.Salomaa (Eds)

WOLFGANG REISIG

Petri Nets

An Introduction

SpringerVerlag
Berfin Heidelberg New York Tokyo

The biggest problem in writing an introduction to a topic
is the selection of the content. Today we have a better under-
standing of which modeling techniques and analysis methods
are truly central than we had 30 years ago. Those techniques
and methods are presented here. Their usefulness isaliegtr
with the help of several examples, particularly the casdistu
in the last part of this book. The software engineer can use
these case studies as a guide. At the same time, the theorist
will find the classic results of Petri net theory, compleneeint
with a few new concepts and a new taxonomy.

The formal arguments in this book are reduced to a mini-
mum. Examples often have enough detail to sufficiently dem-
onstrate the characteristics of the content. Furthermare,
dividual chapters can often be read independently from one
another. For instance, the basics introduced in the firsethr
chapters of Part | are enough to understand the case stadies i
Part Ill. Only their analysis requires knowledge of the noelth
presented in Part Il.

This book was not written for a specific audience such as
students, teachers, theoretical computer scientistsftwae
engineers. Instead, it addresses a broad audience by augnpil
the central developments of the last 50 years of net theaty an
practice and presenting it in a comprehensible way. Thesele
tion of aspects presented here is, therefore, highly stigec




VI

Acknowledgments

This book was originally published in German. The German
readers provided very valuable feedback and pointed ou¢ som
inconsistencies in the terminology as well as various typos
Thanks to all of them.

From the late 1970s, Carl Adam Petri, in numerous con-
versations, explained to me his proposals for a basic theory
of information processing systems. Without these conversa
tions, this book would not have been possiblérgJDesel
contributed important arguments for the selection of the- co
tent. His advice influenced some chapters decisively. Since
the early drafting phase,(Rliger Valk pointed out numerous
typing errors, inconsistencies, ambiguities and intergsti-
tations to me. Before submission to the publisher, some col-
leagues proposed changes to the manuscript, which | gladly
took up. In particular, Katharina@slach, Jana Bhler, Bernd
Kramer, Ernst Mayr, Agathe Merceron, Birger Peil, Christian
Stahl, Hagen ¥lzer and Walter Vogler made valuable sug-
gestions. | also thank Daniel Janusz, Andreas Hoheisef, Ola
Hochmuth, Rolf Hoffmann and Dominic Wist for pointing out
inconsistencies. Annika Flemming made large contribstion
the development of the exercises.

My special thanks to Birgit Heene. Patiently and tirelessly,
she typed and arranged the numerous draft versions. Dirk
Fahland, Katharina &lach and Simon Heiden assisted her
with great commitment.

Michael Ricker then took on the burden of translating the
German text into English. | think he did a great job (also
in putting up with my continuous criticism). My very spe-
cial thanks goes to Tim Denvir, whose relentless scrutiny of
the draft version found many mistakes and spawned various
discussions on some amazing subtleties of the English lan-
guage. With Ronan Nugent at Springer-Verlag, | shared nu-
merous (and quite humorous) conversations about the book’s
shape and layout. | am grateful that he accepted most of my
wishes. He also organized yet another proof reading process
and engaged himself personally.



VI

As a substantial extension, the English version also iregud
a concise compilation of the formal framework that is used
throughout this book. For easy navigation and cross-reéere
the relevant terms are highlighted in the margin of eachtenap
as well as in the formal framework itself.

Wolfgang Reisig, Berlin, February 2013.






Introduction

What Are Petri Nets and What Should
They Be?

A central challenge of computer science is the appropriate ¢
struction ofsystemshat contain IT-based components and that
are embedded in an automated or organizational environment
Such systems araodeledso that clients, manufacturers, users,
etc., can, with the help of the model, better understand &hat
system is supposed to do and how it can be implemented, used,
varied and improved.

In the past 50 years, a multitude of modeling techniques has
been proposed for such systems. They all have their strength
and weaknesses, as well as their preferred fields of appincat
user groups and tools. Petri nets are among the oldest mgdeli
techniques of computer science.

For decades now, interesting theoretical questions about
Petri nets have been posed and solved. Special subclasses
have been studied and tools have been developed. Case studies
have been conducted and successful projects have been imple
mented. In contrast to some other methods, which were fa-
vored for a short time and then forgotten, Petri nets havé kep
their place as one of the well-established modeling teclesq
Initially, there was an interest in integrating Petri netghw
other methods. However, over time, this has given way to a
tendency to keep them separate.

With a lively, steadily growing group of interested re-
searchers and users as well as ever-new software tools, for
decades Petri nets have been in the best position to shajge som
foreseeable developing lines of computer science and to con
tribute to novel concepts like “model-based,” “ubiquitgus
“pervasive” or “disappearing” software engineering. TletrP



net portalwww. i nf or mati k. uni - hanbur g. de/ TQ /
Petri Net s/ i ndex. ht ml offers rich material on this.

Carl Adam Petri himself originally designed his approach
even more broadly. He looked for a theory of information pro-
cessing in accord with the laws of physics, with deep-seated
invariants in the traditions of the natural sciences and wit
formalisms that would allow for the description of a human-
oriented, pragmatic handling of the technical possibe#itof
computer science.

What Does This Book Cover?

The book is divided into three parts. The first part describes
how to use Petri nets for modeling. All concepts are exptaine
with the help of examples; at first, with different varianfs o

a cookie vending machine. We use the most powerful, most
generic type of Petri nets for this (with real-world objeats
“tokens”). It is not until Chapter 3 that we will use the more
specialized and technically simpler typeedémentarysystem

nets with abstract “black” tokens. | chose this order so as to
start with an intuitively very convincing and realistic medd
From there on, | always introduce derived concepts ke
quential and distributed runs, scenariosand additional nota-
tions for elementary system nets first, because they are more
comprehensible this way. The examples are meant to show
that scenarios, in particular, decisively deepen our wstded-

ing of a system and deserve special attention. The synthesis
problem, i.e., deriving non-sequential behavior from adgs

tion of sequential behavior, can be solved very convingingl
with Petri nets. It is therefore covered in a separate chapte

The second part introduces techniques with which impor-
tant properties of system nets can be formulated as wellas al
gorithms with which one can prove or disprove their validity
For easier understanding, some concepts are only intrdduce
for elementary system nets at first. This second part coVlers a
essential analysis methods that are specific to Petri nats, p
ticularly traps, place invariants, transition invarigrdevering
graphs and special techniques for free-choice nets. Scade re



XI

ers may be unfamiliar with the combination of the analytical
power of traps and place invariants, the consistent disbimc
between “hot” and “cold” transitions, and the discussiorusf
properties. Temporal logic and particularly model chegkin
offer generic analysis techniques, which are also suocakssf
applied to Petri nets. This book will not explicitly covercsu
techniques, because they are not specific to Petri nets. How-
ever, ideas from temporal logic frequently influence thid te
implicitly, particularly the distinction between statedarun
properties.

The third part presents a selection of three case studies fro
very different fields. They show how diversely applicabléPe
net models are. In addition, each case study introduces new,
more generic concepts, properties and analysis technieyinésh
are also useful for very different modeling tasks. Amongrihe
are fairness properties, the combination of region theod; a
state properties and symbolic schemata for Petri nets.

In summary, the three parts of this book explain:

e Petri nets as a modeling technique,
¢ the theoretically well-founded analysis of Petri nets,

e case studies from very different areas of application.

Each chapter ends with exercises and recommendations for
further reading. Particularly challenging exercises aseked
with an asterisk. Texts with a colored background focus on
historic or exemplary aspects of the main text. Finally, the
appendix includes a compilation of the formal frameworkduse
throughout this book.

Conclusive Threads

The previous section has already mentioned the speciabfase
elementannets (with “black tokens”). Readers who only wish
to study this type of net can follow thelementary stranaf

this book. Figure 1 shows which chapters and sections belong
to this strand.



Xl

2.2
/3.1
327417 67 7 8 95 10 11 12 14 15 162 17
35 6.4 9.6 16.4
%1
5.2

Figure 1: The elementary strand

Readers who only wish to study the modeling (but not the
analysis) of systems can follow thaodeling strand This
strand contains all the models of real systems appearidgdn t
book. Figure 2 outlines the chapters and sections of ttasgtr

_2// AN

3.2 4.5 7.1 . . 19.1 20.1 21 22
3.4 204

Figure 2: The modeling strand

Readers who are interested in technically simple, but chal-
lenging examples and case studies can choose the elementary
models of the modeling strand, shown in Fig. 3.

//\\\

32 71 7. 81 19.1 20.1 21
204

Figure 3: The elementary modeling strand



X1l

How Is the Content Presented?

Pertinent examples and intuitive descriptions often erplee
content sufficiently well. In places where formal arguments
are used, only basic standard notations are employed, for in
stance, for sets, functions, graphs, vectors, matricetes\s

of equations and propositional logic. Everything beyorat th
(for instance, the handling of multisets) is explained itade

The area of Petri nets has grown so rapidly that there is ot ye
any overall consistent and intuitively appealing termagyl

This text constantly looks for compromises between consis-
tency (identical names for identical things, different reenfor
different things), intuitive comprehensibility and lingtic cor-
rectness of terms and notations. Some (few) terms are newly
introduced here or are used in a new way. Readers who want
to avoid formalism can still acquire a sufficient understagd

of the content.

The page layout is designed to break up the text. The broad
margin contains examples, annotations and alternativeuer
lations. In detall, this means:

e The margin illustrates the text: the examples and annota-
tions in the margin explain and illustrate the concepts in
the text.

e The text explains the margin: readers who are (somewhat)
familiar with Petri nets can often get along by only looking
at the examples and annotations in the margin. The text
then serves as confirmation and generalization.

Even without an analysis, Petri nets are a very interesting
modeling technique. Chapters 1 and 3 are sulfficient to under-
stand the case studies in Part Il1.

When looking for a particular passage in the text, the reader
can find help in the list of Examples and Case Studies in the
Frontmatter or in the Index at the end of this book. Further in
formation, feedback from readers and material for clasaas c

be found atht t ps: // u. hu- berli n. de/ under st andi ngpetri nets



Examples and Case Studies

Simple Cookie Vending Machine — Sect. 1.7, Fig. 1.10 . . . . . ... ... 13
Cookie Vending Machine With Two Kinds of Packets — Sect. 2id, E 1 ...... 19
The Net Structure of the Cookie Vending Machine — Sect. 24, ER . . . . . . . . 21
Abstract Cookie Vending Machine —Sect. 3.2, Fig. 3.2 .. .. ............ 34
Mutual Exclusion — Sect. 3.3,Fig. 3.2 . . . . . .. ... ... 35
Crosstalk Algorithm — Sect. 3.4, Fig. 3.7 . . . . . . . . . . . . . ... 40
Minute Clock —Sect. 4.5, Fig. 4.9 . . . .. .. .. . .. .. ... .. ... ... 53

Bell Clock —Sect. 4.5, Fig. 410 . . .. .. . .. .. . .. .. ... ... 53

Kindergarten Game — Sect. 4.6, Fig. 4.13 . . . . . . . . . ... .. oo 55

Refilled Simple Cookie Vending Machine — Sect. 6.2, Fig.6.2 ...... . ... .. 73
Light/Fan System —Sect. 7.1, Fig. 7.2 . . . . . . . . . . ... 80

Customer, Salesperson and Stock as Open Nets — Sect. 8.20Hig. . . . . . . .. 91
Five Philosophers — Sect. 9.3, Fig. 9.1 . . . . . . . . . ... . .. ... 105
Crosstalk With Counters — Sect. 12.3,Fig.12.2 . . .. ... ... ... .... 134
Business Process: Develop an Offer — Sect. 19.1, Fig. 19. 1 e e e 192
Message-Based Mutex — Sect. 20.4, Fig.20.4 . . . . .. ... .. .. ..... 205
Counterflow Pipeline Processor CFPP — Sect. 21.6, Fig. 21.7 .. ... ... ... 219
Echo Algorithm — Sect. 22.2, Fig.22.6 . . . . . . . . .. . . . . .. . ... 225

Synchronization in Acyclic Networks — Sect. 22.3, Fig. ZR.1. . . . . .. ... .. 228

Consensus Algorithm — Sect. 22.4,Fig.22.13 . . . . .. ... .. .. .... 232



Contents

|  Modeling Techniques 3

1 An Example 7
1.1 ACookie VendingMachine. . . . .. ... .. ... .. .. ... ... ..., 7
1.2 ALooklInside . . . . . . . . . . e 8
1.3 Thelnterface . . . . . . . . . . . . . . e 9
1.4 Hotand Cold Transitions . . . . . . . . . . . . . . . ittt 10
1.5 RUNS . . . . e e e e e 10
1.6 Alternatives . . . . . . . . . e e 11
1.7 FIneTuning . . . . . . . 0 e 12
1.8 Diverse Components . . . . . . . . i 4 1

2 The Basic Concepts 19
2.1 A Variant of the Cookie Vending Machine . . . . ... ... ........ 19
2.2 ComponentsofaNet . . . .. . .. . . . . .. .. e 20
2.3 The Data Structure for Petri Nets: Multisets . . . . ... ............ 23
2.4 MarkingsasMultisets . . . . . .. .. ... ... 24
2.5 Steps with Constant Arc Labelings . . . . . .. ... .. ... ... ... 24
2.6 Steps with Variable Arc Labelings . . . . . ... ... ... ... ... .. 25
2.7 SystemNets . . . . . . 27
2.8 Marking Graph . . . . . . 28
29 FinalMarkings . . . . . . . . . 92

3 Common Special Case: Elementary System Nets 33
3.1 Elementary SystemNets . . . . . . . . . ... 33
3.2 An Abstract Model of the Cookie Vending Machine . . . . .. ....... 34
3.3 Mutual Exclusion . . . . . . . ... 35
3.4 The Crosstalk Algorithm . . . . . ... ... ... ... .. ... ...... 37
3.5 1-Bounded Elementary SystemNets . . . . ... ... ... .... ... 39



XVI

Sequential and Distributed Runs 45
4.1 SequentialRuns . . . . . . . ... 5 4
4.2 TokensaslLabeledPlaces . . . . ... ... .. ... ... . ... .. ... 47
4.3 ACUONS . . . . . 47
4.4 Distributed Runs . . . . . . .. 94
45 Example: ABellClock . . . . .. ... .. ... .. .. 53
4.6 TheKindergartenGame. . . . . . . . . . . . e 54
4.7 CausalOrder . . . .. . . . . e 55
4.8 The Composition of Distributed Runs . . . . .. ... ... ..... ... 57
Scenarios 63
5.1 Defining Scenarios . . . . . . . . ... 63
5.2 The Scenarios of the Crosstalk Algorithm 65
5.3 The Scenarios of the Cookie Vending Machine 66
Further Notations for Elementary System Nets 71
6.1 PlaceCapacities . . . . . . . . . . 71
6.2 ArcWeights . . . . . . . . e 73
6.3 RealExtensions . . . . . . . . . . . 5 7
The Synthesis Problem 79
7.1 Example: The Light/Fan System . . . . . . .. ... .. .. ..... ... 79
7.2 The General Question of the Synthesis Problem . . . . . . ... ... .. 81
7.3 Regionsof State Automata . . . . . .. .. ... . e 82
7.4 The System Net of a State Automaton . . . . . ... ... ..... ... 83
7.5 The Solution to the Synthesis Problem . . . . . .. ... ... ... ... 84
7.6 The Synthesis Problem of the Light/Fan State Automaton . . . . . . . .. 85
Composition of Nets 89
8.1 Netswithinterfaces . . . . . . . .. .. . .. .. ... .. .. .. .. ... 89
8.2 Communicating Nets . . . . . . . . . . 29
8.3 Unambiguous DecompositionintoOpenNets . . . ... ... ... ... 93



XVII

9

10

11

12

13

Analysis Methods

State Properties
9.1 Equations and Inequalities of the Cookie Vending Machine
9.2 \Valid Equations
9.3 Example: Dining Philosophers
9.4 \Valid Inequalities

Traps and Cotraps of Elementary System Nets

10.1 Traps of Elementary SystemNets . . . .. ... .. .......

10.2 Cotraps
10.3 The Trap/Cotrap Property

Place Invariants of Elementary System Nets

11.1 Vector Representation for Elementary System Nets
11.2 The MatrixN
11.3 Place Invariants
11.4 Positive Place Invariants

Combining Traps and Place Invariants of Elementary SystenNets

12.1 Calculating with Equations and Inequalities . . . . . . ...... . ... ...
12.2 State Properties of the Mutual Exclusion System . . . ... ... .. ...

12.3 State Properties of the Crosstalk Algorithm
12.4 Unstable Properties

Traps and Place Invariants of Generic System Nets
13.1 Traps of a System Net

13.4 Applying a Sum Expression to a Multiset
13.5 The MatrixN of a System NeN
13.6 The Place Invariants of a System Net
13.7 The Constant of a Place Invariant

9.5 Equations and Inequalities of Elementary System Nets. . . . . . .
9.6 ModuloEquations. . . . ... ... ... ... .. ... ..
9.7 Propositional State Properties . . . . . . . ... ... ..

13.2 SUMEXPressions . . . . . . . . .
13.3 Multiplying Sum Expressions. . . . . . . . . .. .. ... ...



XVII

14

15

16

17

18

13.8 The EquationofaPlace Invariant. . . . . . . .. .. ... .. . ........
13.9 Properties of the Philosophers System . . . . . ... ... .. ......
13.10Properties of the KindergartenGame . . . . . . . . . . . . ... .. ...

Marking and Covering Graphs

14.1 Deriving Properties from the Marking Graph . . . . . . . .. ... ... ..
14.2 Theldeaofthe Covering Graph . . . . . .. .. ... .. ... ... ...
143 w-Markings . . . . . . . e
14.4 The Construction of the CoveringGraph . . . . . . . . ... .. .. ... ..
14.5 The Finiteness of the Covering Graph . . . . . . . . . .. ... .. ..
14.6 The Covering of SequentialRuns . . . . . . . .. ... ... ... . ...
14.7 Simultaneously Unbounded Places . . . . . . . . .. ... .. «... ..
14.8 Dead Transitions . . . . . . . . . . . . i e
14.9 Covering Graphs of Generic SystemNets . . . . .. ... ... ... ..

Reachability in Elementary System Nets

15.1 Corollaries of Place Invariants . . . . . . . . . . . . . .. . .. uu....
15.2 The Marking Equation . . . . . . . . . . . . . . . ...
15.3 Transition Invariants . . . . . . . . . . ..

Run Properties

16.1 Intuitive Question . . . . . . . .. L e
16.2 Defining Run Properties . . . . . . . . . . . . . . .
16.3 TheDeductionRule . . . . . . . . . ... . ... ... ..
16.4 Proof Graphs . . . . . . . . ...

Free-Choice Nets

17.1 Defining Free-ChoiceNets . . . . . . . . . . . . .. .. .. . .. ... 0.
17.2 The Trap/Cotrap Theorem for Free-Choice Nets . . . . . . . . ... ...
17.3 Clusters . . . . . . e
17.4 The Rank Theorem . . . . . . . . . . . . . . . . ..

Marked Graphs

18.1 Defining Marked Graphs . . . . . . . . . . . ... .. ... .. ..
18.2 Livenessof Marked Graphs . . . . . . . . .. ... ... .. ... .. ...

18.3 1-Bounded Marked Graphs . . . . . . . . .. . ... ... ..

167
167
168
170
.41

179



XIX

18.4 Liveness of 1-Bounded Marked Graphs

19 Well-Formed System Nets
19.1 Example: Models of Business Processes . . . . . . . . . . . . wu. ..
19.2 Well-Formed Elementary System Nets . . . . . ... ... .. ... ...
19.3 Deciding Well-Formedness . . . . . . . . . . . . . .. e

Il Case Studies

20 Mutual Exclusion
20.1 The Problem . . . . . . . . . . . . e
20.2 Realizability . . . . . . . .. e
20.3 Fairness Assumptions . . . . . . . . ..
20.4 Mutex with Autonomous Fairness . . . . . . . . . . . . .. ..
20.5 The Scenarios of the Algorithm . . . . . . . . . . .. .. .. .. . ... ..
20.6 Correctness of the Algorithm . . . . . . . . . ... . . e

21 Asynchronous Hardware
21.1 The Counterflow Pipeline Processor (CFPP): The Problem. .. .. . . . ..
21.2 The Solutionldea . . . . . . . . . . .. . . ... .. . .. .
21.3 The Synthesis Problem forthe CFPP . . . . . . . .. ... .. .. ....
21.4 Structural SimplificationofaModule . . . .. .. ... ... ... ....
21.5 The Modelofthe CFPP . . . . . . . . . . . . . . .. . . . .. .. .. ...
21.6 AnalysisoftheModel . . . . . . .. . . . ... .. L

22 Network Algorithms
22.1 Some Conventions for the Representation of Network Algos . . . . . . .
22.2 The Echo Algorithm . . . . . . . . . ... . ... . .
22.3 Synchronization in Acyclic Networks . . . . . . . ... ... ...
22.4 Consensusinthe Network . . . . ... ... ... ... ... ........

IV Conclusion

23 Closing Remarks
23.1 ABriefHistoryof PetriNets . . . . . . . . ... . ... . ... ... ...

. 187

191
191
192
192



XX

A

23.2 Properties of the Elementary Formalisms of PetriNets . .. . . . . ... .. 237
23.3 Speculative Questions . . . . . . ... L 239
23.4 Petri Nets in Software Engineering . . . . . . . . . . . ... ... 240
23.5 Reference to Other System Models and Analysis Techsique. . . . . . .. 240
23.6 Other Introductory Texts . . . . . . . . . . . . . e 241
Formal Framework 243
Bibliography . . . . . . e &5

INdex . . . . e 261



Part |

Modeling Techniques






This first part is about modeling with Petri nets. In Chap-
ter 1, we start with an example that employs the basic nota-
tions and shows how to use them appropriately. Chapter 2 then
generalizes these notations. The common special casle-of
mentary system nets covered in a separate chapter. Finally,
Chap. 4 juxtaposes the conceptssefjuentiabnddistributed
runs Chapter 5 then uses distributed runs to descsite
narios Chapter 6 introduces additional notations and shows
which are merely useful abbreviations and which actualy in
crease the expressive power of elementary system nets. Part
| concludes with the solving of theynthesis problerand the
compositiorof nets.






An Example Chapter 1

In this chapter, we will use an example to explain the basic
graphical components of Petri nets and how they can be used
to model discrete systems.

1.1 A Cookie Vending Machine

For this introductory example, we describgending machine
that sells cookies. The machine hagan slotand acom-
partmentinto which the packets of cookies are dropped. In

Cookies [

the initial state of the cookie vending machine, the coin slot ]
contains a coin. The cookie compartment is empty.
Figure 1.1 models this as a Petri netin slot andcompart- a cookie vending machine
ment, both depicted as ellipses, are thlacesof the Petri net.
The coin slot contains a euro coin, which istakenof the net
kies [

in Fig. 1.1. Thecompartment does not contain any tokens. A
distribution of tokens across places imarkingof a Petri net.

The machine can now collect the coin and produce a packet O
of cookies. In the Petri net in Fig 1.1, this is modeled as a place
transitiont, depicted as a square (or rectangle).

In Fig. 1.1, the transition is enabled because its incom-
ing arc starts at a place containing a coin token, as reqbiyed D N
the arc’s label. Therefore,canoccurand thereby change the transition
current marking. Intuitively, this can be understood as aeno
ment or flow of tokens. As the directions and labelings of the
arrows in Fig. 1.1 show, the coin “flows” out of the coin slot,
and a cookie packet “flows” into the compartment. Arrows

coin slot

@ O Fi : i
- > . > - gure 1.1:  The cookie
. - vending machine in its ini-

coin slot t compartment g state



An Example

compartment

a — collect coin
b — give out cookie packet

- @ - O @ Figure 1.2: The cookie
vending machine after the

coin slot t compartment  gccyrrence of

depict thearcsof the net.

Figure 1.2 shows the new marking: The plao@ slot does
not contain any tokens, while the placempartment contains
a cookie packet as a token. In this markihgannot occur.

1.2 A Look Inside

If we look inside the machine, we will find several components
that store coins and cookie packets and handle the salereFigu
1.3 in turn models the interior of the vending machine as & Pet
net: there is atorage filled with five cookie packets and one —
initially empty —cash box.

compartment

cash box

Figure 1.3: A look inside the cookie vending machine

In the marking shown, transiticscan occur. Its effect can
be deduced from the arrows starting or endinguirthe coin
disappears from theoin slot and appears in theash box. Si-
multaneously, aignal for transitionb is generated, depicted by
a black dot. Figure 1.4 shows the marking after the occugenc
of a.

Now, transitionb can occur, because the arrows ending in
b are labeled with objects that are actually present in the re-
spective places: a black dotsignal and a cookie packet (even
several) in thestorage. After the occurrence df, the marking
shown in Fig. 1.5 is reached. It corresponds to the marking in
Fig. 1.2. No more transitions can occur now.



1.3. The Interface 9

compartment

coin slot compartment

Figure 1.5: After the occurrence bf

1.3 The Interface

So far, we have modeled the vending machine elesed sys-

tem coins and cookie packets are distributed across places and
the occurrence of transitions redistributes them. What gsmi

ing are actions of the environment: someone inserts a amin, f
example, or takes out a cookie packet. How do we model this?

As Fig. 1.6 shows, a transitiansert coin sits in front of D&Q@ﬂ——»
the — empty — coin slotinsert coin does not have any precon-  insertcoin  coin slot a -
ditions, so it can occur anytime. In the real world, of course
this action, in fact, does have further preconditions. Mst ® ®
portantly, the environment has to provide a coin. Likewike, insert coin  com siot 2
transitiontake packet models the taking of a packet out of the T
compartment.

The two transitionsnsert coin andtake packet model the
vending machine’sterface Both are enabled in the marking
of Fig. 1.6. Connected with this is the label’; which we will
deal with next.

EN



10

An Example

cold transition

Figure 1.6: The cookie vending machine with the cold tréms# of its
interface

1.4 Hot and Cold Transitions

So far, we have tacitly assumed that an enabled transitimet is
tually going to occur. For the transitiomsandb of the cookie
vending machine, this is appropriate: A coin in the coin,slot
after all, is supposed to generate a signal, which in tugs tri
gers the transport of a cookie packetandb arehot transi-
tions However,nsert coin is a different matter. This transition

is enabled in Fig. 1.6, for instance. In the real world, a cus-
tomer triggers this transition by inserting a coin into tloénc
slot. Whether or not this will ever happen is not guaranteed.
Therefore, we want to allow thétsert coin stays forever en-
abled without ever actually occurring. In the modesert coin

is acold transition The transitiorntake packet is cold as well:

no customer is forced to take his paid-for packet out of the
compartment.

In general, the majority of a system model’s transitions are
hot. Cold transitions are much rarer. As in our example, cold
transitions are often found at the interface to the unmablele
environment. To distinguish them from hot transitions,dcol
transitions are labeled witke” (as an indication of their often
“external” character).

1.5 Runs

A run of a system model describes how transitions occur con-
secutively. A typical runv of the model in Fig. 1.6 starts with
the insertion of a coin. This generates a signal (via traomsit



1.6. Alternatives 11

a) which then triggers the release of a packet (transibijon

A run is completeif it terminates in a marking that does
not enable any hot transitions. The rundescribed above is
complete, because only enables the cold transitiommssert
coin andtake packet. An initial part of w that enables one of
the hot transitionsa or b is anincompleterun.

The above runv can be extended byke packet to form
another — also complete — run. It can also be extended by an-
other occurrence of insert coin. In this case, howexvandb
have to occur once more as well. The description “complete”
is usually omitted. Incomplete runs are discussed onlyyare

The cookie vending machine in Fig. 1.6 has several more
runs apart from the above-mentioned runThey are formed
by the repeated occurrence of the net’s transitions.

In the marking shown in Fig. 1.6, the first packet can be
taken out of the compartment, the second packet can be dtoppe
into it and the third coin can be inserted.

The transitiongake packet, b andinsert coin all occur in-
dependently from each other. How the repeated occurrence of

transitions can form one or more runs is discussed in Chap. 4. Smallest example for indepen-
dently occurring transitions

1.6 Alternatives

Our cookie vending machine does not accept every coin. Maybe

the machine has a coin verifier that rejects faulty coins. ihay consiot . a
the customer can manually eject the coin from the coin slot [ ]
by pushing an appropriate button. The vending machine can @

return a coin to its environment for various reasons. Howeve
we do not want to model all those details. For us, it is sufficie
to model that a coin in the coin slettherreaches the cash box

return coin

or is returned to the environment. We do not model why each

alternative occurs. Cookies [
Figure 1.7 adds to the cookie vending machine the option

of returning coins. After the insertion of the coin, the magk Rn

in Fig. 1.8 is reached. Now, all preconditions for the occur- ]

rence ofreturn coin as well asa are met. However, only one
of the two will actually occur: ifa occurs, the coin slot will



12

An Example

smallest example for a conflict

. return coin

cash box

Figure 1.8: Two optionsteturn coin anda

lose its token, anekturn coin will no longer be enabled. How-
ever, ifreturn coin occurs,a will no longer be enabled. Both
transitions are ionflictwith each other.

1.7 Fine Tuning

After five coins have been inserted and five cookie packets
have been given out, the storage is empty and the cash box con-
tains five coins. The sixth inserted coin also reaches thie cas
box. It generates a signal which cannot be processed, howeve
because there are no more cookie packets in the storage. Fig-
ure 1.9 shows this marking. The sixth customer has paid, but
does not get any cookies!

Therefore, we have to preveafrom occurring a sixth time.
The sixth coin always has to be returned to the environment.
For that purpose, the model is expanded as shown in Fig. 1.10.
It now contains an additionabunter. The counter is modeled
as a place that always contains exactly one token. This tisken
always a natural number. Initially, this is the number ofldeo



1.7. Fine Tuning 13

storage

coin coin slot
@

@@

. return coin cash box

Figure 1.9: Reachable marking of the cookie vending machine

packets in the storage. Every occurrence of the trans#ion
reduces its value by one.

. return coin counter - cash box

Figure 1.10: Addition of a counter

Technically, we achieve this with the help ofparameter
x. The preconditions for the occurrenceahow include an
occurrence modethat is, the replacing of with a concrete
value. From the marking shown in Fig. 1.10 with the occur-
rence mode=5, the marking in Fig. 1.11 is reached.

The labelx>0 in a states an additional precondition for the
occurrence oa. It will preventa from occurring, if the counter
holds the token “0”.

Finally, we wish to model that the coin slot can contain at
most one coin, and that at most one signal is pending at any
one time. Figure 1.11 models this by means of two additional
places.

With that, we have modeled the essential components of
the cookie vending machine as a Petri net. At the chosen level
of abstraction, all aspects of the vending machine’s sirect
and behavior are modeled correctly. What “correctness” siean



14 An Example

return insertion
coin possible
counter 6 cash box

Figure 1.12: At most one coin in the coin slot and at most ogeaipend-
ing

here and how correctness is verified are covered in Part Il of
this book.

1.8 Diverse Components

The model of the cookie vending machine shows what makes
Petri nets so flexible: we model entirely diverse components
that nevertheless can be expressed and combined with a uni-
form formalism. In the models in Figs. 1.3-1.11, places and
their tokens describe:

e components of a real vending machiein slot, cash box,
storage, compartment, with coins and cookie packetss
tokens;



1.8. Diverse Components 15

e technical components: tlwunter with anumberas token
andsignal with a black token representing a pending signal;

¢ logical abstractionsinsertion possible, signal andno sig-
nal with black tokens representing the logical vatuee.

Transitions describe:

e actions of the vending machine’s interior, modeling thasra
port of objects and signals: (accept coin) and (give out
packet);

e actions of the vending machine’s interfaceturn coin;

e customer actions allowed by the vending machine, influ-
encing its behaviorinsert coin, take packet.

A global state of the cookie vending machine is modeled
as a marking (distribution of tokens across places). One ac-
tion, that is, a change from one state of the vending machine
to a new one, corresponds to a step from one marking to an-
other marking in the model. Several successive actionseof th
vending machine correspond to a run of the model.

By modeling all these diverse components with a uniform
formalism, their reciprocal effects can be identified and-an
lyzed. In that way, the correctness of the entire systemiand i
effects on the real world can be convincingly verified.



16 An Example

Exercises

1. How many reachable markings does the system net in Fi@. Hate if the placeounter

initially holds the tokere (instead o6)? Based on this result, estimate whether the number

of reachable markings of the unaltered net is greater th&seithan 70.

2. In Fig. 1.10, replace the initial marking of the plasmunter with (a) 4 or (b) 6. Discuss
what these variations mean intuitively.

3. Model a gambling machine with the following behavior:

Initially, the machine is ready for a game and the player aaerit a coin. An inserted coin
reaches the cash box, and the machine changes into a state&mitpays out a coin from

the cash box an arbitrary number of times, which may be zetsofe point, the machine
stops giving out coins (at the latest when the cash box is ¥napid becomes ready for
another game.

Further Reading

Someone who models a system does not always immediatekydbiout components that be-
have like places and transitions of a Petri net. Usually, sdesw is first theoretically broken
down into abstract components, which are later on systeaiBtirefined. All modeling tech-
niques based on Petri nets make use of refinement and corapo#itconnection wittcolored
nets [38], hierarchical concepts are introduced. Girandt\alk [29] also recommend a refining
approach in their extensive book on system design with Retsi. Introductory texts of various
kinds can be found in the anthologies of the latest Adwvanced Courses on Petri Ngfis8],
[70].



1.8. Diverse Components 17

How It Began

In the late 1950s, Carl Adam Petri, at the time a research ae¢eat the Department for In-
strumental Mathematics at the University of Bonn, Germamyugiht very pragmatically about
the implementation of recursive functions. After all, foich functions, it is generally not pos-
sible to predict how much space their calculations will aons. If the available resources are
insufficient for a calculation, the data processing systeaukl beexpandableto continue the
calculation. This is more efficient than starting over witla@er system.

So Petri sought a system architecture that caedpanded indefinitelySuch an architecture
does not have any central components, most of all no cesyathronizing clock, because
every expansion enlarges the system in space. Connectitims ¢tock would become longer,
and longer cycles would demand lower clocking frequenddsome point, the limitations of
the laws of physics would have to be broken in order to furthgrand the system. Therefore,
such an architecture inevitably has to make do without anglsynizing clocks.

In his famous dissertation “Kommunikation mit Automater€aommunication with Au-
tomata) [56], Petri shows that it is actually possible tostaurct such an indefinitely expandable,
asynchronousystem architecture. It incorporates locally confined congmts communicating
with each other via local interfaces.

Actions withlocally confinedcauses and effects are the central idea of the nets propgsed b
Petri in [56]. Termed “Petri nets”, they became one of thetpopular concepts of computer
science. Only later did Petri start to use a graphical rgmtasion. Thus, the first text on Petri
nets does not contain a single Petri net!






The Basic Concepts Chapter 2

Now we take a little closer look at Petri nets, that is, atrthei
structure of places, transitions and arcs, the fundameatal
structure of multisets, the structure of markings and steybs
lastly the reachable markings and the final markings. We ex-
plain this with the help of the (slightly modified) cookie \ten

ing machine.

2.1 A Variant of the Cookie Vending Ma-
chine

Figure 2.1 shows a modified version of the cookie vending ma-
chine previously shown in Fig. 1.10 (the denotatians .H of

the places and .. .e of the transitions make the notation eas-

ier). In addition to the five rectangular cookie packets, two

Figure 2.1: Two kinds of packets and giving out two packetsnae

two kinds of tokens:
round packets are now in the stordgjelhe customer receives [

two cookie packets for one euro. The machine decides non-
deterministically whether those packets are rectangulanomd.
Bought packets are dropped into the compartn@enthe cus-



20

The Basic Concepts

tomer can remove one packet at a time (via the cold transition
d). The netin Fig 2.1 will be used as an example throughout
Chap. 2.

2.2 Components of a Net

The example of the cookie vending machine shows all the kinds
of components that can occur in a Petri hate will look at
them again individually and explain their roles in the moalel

the system.

Places

A Petri net is a structure with two kinds of elements. One kind
of element isplaces Graphically, a place is represented by
a circle or ellipse. A place always models gpassivecom-
ponent:p can store, accumulate or show things. A place has
discrete states.

Transitions

The second kind of elements of a Petri net &ansitions
Graphically, a transition is represented by a square oanect
gle. A transitiont always models aactivecomponent:i can
produce things, consume, transport or change them.

Arcs

Places and transitions are connected to each other byetirect
arcs Graphically, an arc is represented by an arrow. An arc
never models a system component, but an abstract, sometimes
only notional relation between components such as logaral ¢
nections, access rights, spatial proximities or immediate

ings.

The literature gives a multitude of extensions and gerextadins,
which are not covered here.



2.2. Components of a Net 21

In the example of the cookie vending machine, it is striking O, A.O
that an arc never connects two places or two transitions. An
arc rather runs from a place to a transition or vice versa from D ﬂ
a transition to a place. This is neither coincidental noi-arb
trary, but inevitably follows if nets are used correctly todel
systems, that is, if passive and active components are iyope
separated.

Net Structure

It is customary to denote the sets of places, transitionaecsl o ¢
with P, T"and F', respectively, and to regard arcs as pairs, that O ] arc
) ’ ’ 1 (p7 t)

is, Fras arelation” C (P x T')U (T x P). Then t
P

[ 0O arc@p

N = (P,T,F)

is anet structure The places and transitions are #lements
of N. F'is theflow relationof N. Figure 2.2 shows the net

net structure

structure of the cookie vending machine as shown in Figg,1.1  Pla®®
1.11 and 2.1. transition
arc
Figure 2.2: The net structure of the cookie vending machine t t
If a given context unambiguously identifies a nét the
pre-set®z andpost-setz® of an element: are defined as ot t
*r =gef {y | yFx} and
x® =get {y | ©Fy}. pre-set'z post-set:®
loop

Two elementse, y of NV form aloopif x € *y andy € °x.
For instancea andE in Fig. 2.2 form a loop.



22

The Basic Concepts

tokens in places:

ACED

QTS
c®

E@

labelings of arcs:

®

labeling

labeling of a transition:

Jx_

R

2

Markings

A markingis a distribution of tokens across places. A marking
can be represented graphically by symbols serving as tokens
the respective circles and ellipses. For a system with aialini
state, the initial marking is often depicted in this way. The
symbolic tokens (for instancep, [}, 7) generally denote ele-
ments of the real world. This correlation is so strong that we
do not distinguish between the symbolic representatiorttand
real elements that they denote.

Next to symbolic tokens, abstract black tokens often occur,
for instance, in the placeas andG in Fig. 2.1. Such a token
often indicates that a certain condition (modeled as a place
met. It is also possible, and common, to represent concrete
elements not by symbolic but by abstract black tokeBke-
mentarynets only utilize black tokens.

Labelings of Arcs and Transitions

Arcs and transitions can be labeled wekpressionsNext to
elements of the real world, which have occurred in markings
before, functions (for instance, a subtraction) and véegior
instancex andy) can occur in such expressions. These expres-
sions have a central property: if all variables in an expogss
are replaced by elements, it becomes possible to evaluate th
expression in order to obtain yet another element. It is eonv
nient to write the labeling of an afg, ¢) or (¢, p) as

ptortp (1)

respectively. Statement (1) describes the tokens that “flow
through the arc” at the occurrencetof

The variables in these expressionsgaeameterslescribing
different instances (“modes”) of a transition. Such a trans
tion can only occur if its labeling evaluates to the logicalue
“true”. The rest of this chapter describes this correlation
more detalil.



2.3. The Data Structure for Petri Nets: Multisets 23

2.3 The Data Structure for Petri Nets:
Multisets

In a Petri net, the tokens of a place often represent objects
that we usually do not want to distinguish. For instance, we
are only interested in the number of coins in the cash box (al-
though we could, for instance, distinguish them by theiedat
of coining).

In general, examples of differekinds of tokensire mixed
in a place, e.g., rectangular and round cookie packets in the

storageH. They form amultiseta, formally a mapping multiset
a:U—N
[
that maps every kind of a universeU to the number of its SN =
occurrences im. a of H:
We always assume a “sufficiently large” univerSethat a(D) 3

2
0, forany otheru

contains all examined kinds of tokens. We write the set of all (=)
multisets ovelU as a(u)

M(U) or M for short setM(U) of all multisets

if the context unambiguously identifies the univetse _ .
. . o the universe of the cookie
The universé/ can contain an infinite number of elements, yending machine:
for instance, all natural numbers. A multisebverU can map
the valuea(u) = 0 to almost allu € U. That means that
does not occur ia. Thus,a is finite if

0,69,®,0,1,2,3,4,5,6,7,e

finite multiset
a(u) # 0 for only a finite number ofu € U.

We write a finite multiset: with its multiple elements in square finite multiset:
brackets. . .]. Consequently, themptymultiset is denoted by |5 7.0, , O]

[]:
[](u) =0 foreachu € U. a(@) =3,a(S) =2

Multisetsa, b € M can be added: for eache U, let .
empty multise |

(a+b)(u) =det a(u) + b(u). sum of multisets
They can be compared:

a < b iffforeach v € U : a(u) < b(u), Ceron s



24

The Basic Concepts

subtraction on multisets

arithmetic operations on
multisets:

(0,3]+[0]=[0,0,3]
(0,2]<[0,0,2]
a<a

0,9,8]-18]=10,9]

a—a=|]

marking
Initial marking M, of Fig. 2.1:

Moy(H) =
[(0,0,0,0,0 9,9

My(A) = My(B) = My(C) =
[]

My(D) = Mo(G) =[]

and b can be subtracted from a&iK «:

(@ = b)(u) =dger au) — b(u).

With these notations, we describe dynamic behavior.

The tokens of a place usually belong to @ype that is, to
a (small) subset of the univeréé In Fig. 2.1, for instance,
only coins lie in the placea andF, only black tokens ib and
G, only cookie packets inl andC and only numbers i&. If a
placep only holds tokens of type, the typer is assigned to
the placep.

2.4 Markings as Multisets

Now we can precisely define the termarking A marking M
of a net structuréP, T', F) is a mapping

M:P = M.

That means that/ maps every placgto a multisetM (p). As
explained in Sect. 2.2, a marking describes atateof the
modeled system. Given the significance of a system’s initial
state, the initial marking (usually denotéd,) is often drawn
into the respective net structure.

2.5 Steps with Constant Arc Labelings

Let us now examine the special case in which the arcs around
a transitiont are labeled with individual elements of a uni-
verse. This applies to the arcs around the transitiaarsde in

Fig. 2.1. In general, however, an arc is labeled with mora tha
one element. Formally, this is a multiset, whose bracketsl[ a

] are not written in order to save space. Thus, with the nmati

of (1), for each ar¢p, t) or (¢, p) the following holds:

pte M and tp e M.

We technically expand this notation for all plageand transi-
tionst by

pt=[] and ip =]



2.6. Steps with Variable Arc Labelings

25

if no arc(p,t) or (¢, p) exists, respectively.

A transitiont canoccurin a markingM if the related pre-
conditions are met, that is ¥/ enableghe transitiort.

As in many other system models, we separateetiegbling
of ¢ from the effect of thedccurrenceof t. Whether a marking
M enables a transitiohdepends on the labelings of the arcs
ending int. M enableg if and only if

M(p) > pt

foreach ardp, t). Thus, the initial marking of the cookie vend-
ing machine only enables the transition

If a marking M enables a transitiot) it results in thestep

M L5 M,
in which the marking\/’ of each place is defined as

M'(p) =dget M (p) — pt + tp.

2.6 Steps with Variable Arc Labelings

An arc or a transition can be labeled with an expressitimat
contains variables. By assigning values to the variables in
the expressiom can be evaluated. H is written onto an arc,
the result is a multiset. H is written into a transition, the result
is either“true” or “false”. In order to calculate these values,
the labelings of all arcs that end or start at a transitioa éiftts
aroundt) have to be taken into account simultaneously.

Put a little more technically: Let, ..., x, be the variables
of the arc labelings around a transition Let ., ...,u, be
elements of the universe. Then

6:(ml:ulax2:u2a"'7$n:un)

is amodeof ¢. In Fig. 2.1, for instance, the variablgsand
z occur in the arc labelings around the transitien Thus,
pr: (y =10,z = &) isamode of b. The transitianhas three
additional modesp, : (y =3,z=0), 3 : (y =2z = )

andg, : (y = z = [0). A modeg of a transitiont creates

tis enabled

the first step of the cookie
vending machine:

e [}~ On

formal:

Moy — M,
My(D) =[], Mi(A) = [®]
M (p) = My(p), for any other place

expression
transition condition
arc labeling

mode of a transition



26 The Basic Concepts

mode of the transitions andb:  fOr €ach ardp, t) or (t,p) a multiset3(p, t) or 3(t, p), respec-
_ _ _ tively. Thus, in Fig. 2.1, (H,b) = B2(H,b) = [, =]. An-
- 57 - ) - . .. -
A B =U.6(z) =2 other example i3 : (x = 7), a mode of the transitioh in
results in the constant arc labelings F19- 2.1, and it holds3(a, E) = [7 — 2] = [5].
If pt does not contain any variables, then obviously

= o
a b B(p,t) = pt.
%ZID—9 L
5 |3 A transitiont can itself have a labeling that contains vari-

ables. An example is the labeling> 2 of transitiona in
Fig. 2.1. For such a labeling a modegs of ¢ creates a logi-
cal value,3(i). For instance, for the labeling> 2 of a, the
modep; : (x = 7) creates the logical valug (x > 2) = [7 >
2] = true.

Thus, a mode3 of ¢t creates multisets at the arcs around
t. A step oft in the modes is then defined as described in
the previous section. Additionally, the labeliagof ¢ has to
evaluate tQ3(a) = true. For a step fromV/ to M’ viat in the

step modes, we write
M5,

The symbols for the mode is often omitted and we write,
for instance
x = 5 instead off : (x = 5).

M enableg in modef Put in a formal context, a marking/ enables a transitiohin
the modes of ¢ if for each arch in the forntp, ¢):

M(p) > B(p,t)
and for the labeling of ¢:

B(i) = true.

This then results in the steld N M', in which M’ for each
placep is defined by

M'(p) = M(p) — B(p,t) + B(t, p).

Again, letf(p,t) = ] ands(t.p) = | ] if no arc(p, t) or (¢, p)
exists inNV, respectively.



2.7. System Nets 27

a,x=7

Figure 2.3: Steg; — M>
Consider the cookie vending machine in Fig. 2.1: After the »

step M, <, M, the marking)M; enables the transitioa in

the modex = 7, and in no other mode. Figure 2.3 shows the

effect that the step

for 5(X) = 7: conditionxX > 2
ax=7 is met!
Ml s MQ

has on the surroundings of the transitmnThe marking)/,, C @

which is then reached, enables the transitioiecause now, D<’

values can be assigned to the varialyl@sdz. Every assign- .

ment of[J] or = to these variables enablesThus, there exists ¢ has only one mode
a selection of four modes and hence four stepa/in as out-

lined in Fig. 2.4.

Figure 2.4:M, enabled) in four modes

2.7 System Nets

We have now assembled the principal notations that enable us
to describe a discrete, dynamic system, as for instancekaecoo



28

The Basic Concepts

cold transition

system net

reachable marking

marking graph

vending machine. According to the principles in Section 2.2
we use an appropriately labeled, finite net structiveto do
this. A central term is that ad marking of NV, that is, a distri-
bution of tokens (multisets) across the placevofTypically,
the initial marking of vV is denoted byM, and is explicitly
drawn intoN. M, describes the initial state of the modeled
system. A transitiort can be labeled with aonditionand the
arcs around with expressionsThese labelings show the vari-
ous situationsrfode$in whicht is enabled, and the respective
effects at the occurrence af Lastly, every transition is either
hot or cold, where cold transitions are indicated by

A net structure together with an initial marking, trangitio
conditions, arc labelings and cold transitions forsyatem net

System nets are used to model real, discretely changeable
systems. Each place of a system net models a state compo-
nent of the system and each currently existing token in agplac
models a currently given, but changeable, characteribtltad
component. Each transition of a system net represents an ac-
tion of the system. The occurrence of a transition describes
the occurrence of the respective action. If, in doing so,-a to
ken reaches or leaves a place, the action respectivelyesreat
terminates the corresponding characteristic of the statgo-
nent.

2.8 Marking Graph

For a system neV and an initial markingV/,, a markingM
of NV is reachablef there exists a sequence of steps

My 22 ap 2% Py

with M,, = M. In general, infinitely many markings ao¥

are reachable. The reachable markings and steps of a system
net N can be compiled into thenarking graph ofN. Its
nodes are the reachable markings, its edges the steps betwee
the reachable markings @¥. The initial markingM, of N

is specifically highlighted. The marking graph is also often
called thereachability graph Figure 2.5 shows an initial part



2.9. Final Markings

29

Figure 2.5: Initial part of the marking graph for the systeshin Fig. 2.1

of the marking graph for the system net in Fig. 2.1. The com-
plete marking graph has approximatélyo nodes. In contrast

to the system net in Fig. 2.1, it would be extremely laborious
and counterintuitive to use the marking graph as a model for
the cookie vending machine. In principle, the marking graph
of a system net is a suitable starting point for its (autohate
analysis, as long as only a finite number of markings are reach
able.

2.9 Final Markings

A system has reached a final state if it can remain in this state fina| marking
forever. The marking of the system net in Fig. 1.9 models such
a state, in contrast to Fig. 1.10 and Fig. 1.11. A final state of _

. . . a final marking:
a system corresponds tofiaal marking In such a marking, 0 O
no hot transitions are enabled. For instance, in the systgm n _ _
in Fig. 2.1, the initial marking is, at the same time, also alfin  nota final marking:
marking (it only enables the cold transition



30 The Basic Concepts

Exercises

1. The system net in Fig. 2.6 expands the cookie vending machiFig. 2.1 by a transition
f. In your own words, describe the effect and the functior ioiside the cookie vending
machine.

Figure 2.6: Expansion of the cookie vending machine in Fity® a transitiorf
2. Which of the markingd/y, . . ., My in the marking graph in Fig. 2.5 are final markings?

Further Reading

In the first two chapters of this book, we break with traditiomtroducing the field of Petri nets.
Usually, one begins with the technically simple case of glsikind of “black” token, a case
we will not cover until the next chapter. Instead we have irdialy introduced “individual”
tokens, because they are intuitively more comprehengiimes realistic and more accurate. The
price for this is a complex step rule. For such nets, theditge gives many more, ultimately
equally expressive, representations. Widely used is aoreos Petri nets calledolored nets
[38]. They emphasize the semantics of functions over naitisGirault and Valk [29] also use
such nets.

As is often traditional in mathematics, we do not alwaysindggiish objects and functions
from their symbolic representations in expressions, egustetc. Our distinction between hot
and cold transitions is found only sporadically in the kiieire on Petri nets. Damm and Harel
used it inLive Sequence Charf85] as a very apt way of expressing system specifications.

In the historical development, Genrich and Lautenbach ii28pduced nets witindividual
tokens agpredicate/transition netand in doing so emphasized the connection with logic.



2.9. Final Markings 31

A Universal, Expandable Architecture

In his dissertation, Petri designed a universal computgnitcture that can be expanded an
arbitrary number of times. We will explain this idea using #xample of a finite, but infinitely
expandable stack. It consists of a sequedge. . A,, of moduleswhere each moduld; (i =
0,...,n) has aridle statethat stores either a value or — e.g., initially — a “dummy” The net

shows the modulél, with its interface to the environment: The transitjpmsh accepts a value
from the environment via the variabkg, which may hold any value. The variableholds the
previously stored value, which is passed on to the moduybga the transitiora,. The transition
pop extracts the value stored idle state. Via b, the module then receives the value stored in
A;. The net

combines four modules to form a stack. Each moddjebehaves according to the pattern
described forAy,. Each occurrence gdush or pop triggers a wave that moves from left to
right through the stack. It ends i, by popping out the previously stored value or pushing in
a “dummy” L respectively. The transitiorss, andb, are the extension points where another
module A5 can be attached.






Common Special Case: Chapter 3
Elementary System Nets

Petri nets can be used to describe how the control flow and
data flow of a distributed algorithm or system interact. How-
ever, one often merely wants to express where a control flow
currently stands, whether resources are available, how man
messages are pending, etc.

For such an abstract view, it is not necessary to distinguish
several kinds of tokens: only “black dots” are used as tokens
(such tokens already occurred in the cookie vending maghine

Whenever a transition occurs, “exactly one black token flows
through each adjacent arc”. Because this does not have to be/’ . /
S . instead of
explicitly stated, the arcs do not have any labelings. Sysh s
tem nets are calledlementary
Important aspects of distributed and reactive systems can
be modeled appropriately with elementary system nets. We
will show this with three examples: an abstract variant ef th
cookie vending machine, the problem of mutual exclusiod, an
the crosstalk algorithm.

3.1 Elementary System Nets

(P, T, F') with finite setsP andT of places and transitions, and
an initial marking,M, : P — N. Some transitions are marked

ascold (via the inscriptiore). Each marking has the form E:G?i:
M(p) =3

M :P — N.

M(p) € N not to be con-
fused with M (p) : U — N for
generic system nets!

Each place holds M (p) tokens.

The step rule of elementary system nets follows from the
step rule of generic system nets: A markihgenablesa tran-

sitiont if M (p) > 1for each place € °t. For a step\/ M



Common Special Case: Elementary System Nets

the following holds:

{M(p)l if pctandp &t

M'(p)=¢ M(p)+1 if pet®andp ¢t

M (p) otherwise

For an elementary system n#tit follows from Sects. 2.8
and 2.9 that:

e the step sequences
My - My 25 .. M,

that start with the initial marking/, contain theeachable
markings and steps,

¢ the marking graphof N has as nodes the reachable mar-
kings and as edges the reachable step$,of

¢ afinal markingof N does not enable any hot transitions.

3.2 An Abstract Model of the Cookie
Vending Machine
Figure 3.1 shows an abstract variant of the model of the eooki

vending machine in Fig. 1.11: it does not model euro coins and
cookie packets anymore, only their respective amountsh Eac

storage (§

insertion

possible
counter @ ‘ cash box

Figure 3.1: Abstract variant of Fig. 1.11

return
coin



3.3. Mutual Exclusion 35

coin and each packet is represented by a black token, jest lik
a pending (or not pending) signal, or the possibility to rse

a coin. The current value of the counter is represented by the
corresponding amount of black tokens.

This kind of abstraction of concrete objects simplifies the
formal analysis of the model.

3.3 Mutual Exclusion

When it comes to distributed algorithms, the synchroniratio
of actions is often crucial: an action can occur if certaindio
tions are met or certain local states are reached. It is nedé®

to model such a condition or state as a place. This place con-
tains a (black) token if and only if the respective conditisn
met or the respective local state is reached. Models of rhutua
exclusion are typical examples of this.

In the field of distributed systems, the problem of mutual ex-
clusion manifests itself in a variety of contexts. The siespl
case deals with the interaction of two processes and a éscarc
resource that each process occasionally uses. Examples are
software processes occasionally using a printer, or vehimt-
casionally passing through a traffic bottleneck. At the adre
this lies the demand that the two processes never use tleescar
resource at the same time.

Figure 3.2 shows the essential components: Each of the two
processes$ andr (denotingleft andright) can cycle through
three statedpcal, waiting andcritical. In its local state, a pro-

waiting, b e waiting,

Figure 3.2: Mutual exclusion



36

Common Special Case: Elementary System Nets

cess works without the scarce resource. Via the steaiting
(transitiona or d, respectively), the process announces its in-
terest in the scarce resource.

The transitionsa andd are cold. Hence, a process is not
obliged to execute this step. From some point forward, it may
only work locally. The step fromwvaiting to critical (transition
b or e, respectively) additionally requires a tokenkisy. The
purpose of this is obvious: in itgritical state, a process, for
instancel, uses the scarce resourdeonly reaches this state
(via b) by means of thé&ey. However, then the other process
(in this case) cannot reach its critical state va because the
key is not available anymore. The procés®es not return the
key until| leaves its critical state via

Betweenb ande, a conflict can arise an infinite number
of times. No strategy has been modeled to solve this conflict.
Because of this, all conceivable occurrence frequenciesend
guences are possible. In an extreme case, the conflict will al
ways be resolved in favor of the same process (for instance, i
favor ofl). Then the other process (in this ca3eever reaches
its critical state and instead remaiwasiting forever. In general,
one wants to guarantee that eveniting process will eventu-
ally becomeritical. This problem is covered in Chapter 20.

Figure 3.3 shows a solution that is not very convincing:
starting withr, both processes can alternately reach their cri-
tical state. By remaining in its local state, one process lcas t
prevent the other from repeatedly reaching its criticaiesta

key from/ tor

r

key fromrto [

Figure 3.3: Processes reach their critical states altelsnat



3.4. The Crosstalk Algorithm 37

3.4 The Crosstalk Algorithm

The crosstalk algorithmassumes tw@agentscommunicating
with each other via a technical channel. The channel works
reliably as long as it transmits onbnemessage. However, as
soon as both agents’ messages collide on the charrosstalk
occurs, which may result in corrupted messages reachinmg the
respective recipients. Since both agents can send messages
dependently from one another, crosstalk cannot be predente
However, the algorithm allows both agents to recognizeszros
talk. In that case they could, for instance, repeat theirsagss

in a predetermined order. We will now introduce an algorithm
that works incycles during each cycle, either one agent suc-
cessfully sends a message to the other, or both agents reeogn
crosstalk.

Chapter 5 will show thascenariosstructure the algorithm
and increase its comprehensibility. Chapter 12 will contain
proof that both agents correctly implement the cyclic bébrav

Messages from Left to Right

finish return

confirmed

Figure 3.4: Sender and recipient

Figure 3.4 shows how tHeft agent can leave its initial state
idle; via send. In doing so, it sends a messager(t) and en-
ters awaiting state. After having received a confirmatiaoi-
firmed), it ends its cycle vidinish.

The right agent leaves its initial statée, via reply and in



38

Common Special Case: Elementary System Nets

doing so confirmsdonfirmed) the messageent by the left
agent. It ends its cycle vieturn.

Messages in Both Directions

finish; return,

confirmed,

confirmed,

return; finish,

Figure 3.5: Symmetrical complement: deadlock possible

We now complement the system symmetrically so that the
right agent can also send a message to the left agent. Figure 3
shows this symmetrical complement. However, the system en-
ters a deadlock (both agentaiting) if bothagents send a mes-
sage during the same cycle.

Luckily, each agent can recognize a deadlock: it expects a
confirmation €onfirmed) but receives a messageft). There-
fore, each agent can resolve the deadlock via an additional
transitioncrosstalk, as Fig. 3.6 shows.

Preventing Errors

The system in Fig. 3.6 is still faulty. Itis, for instance gstle
for the left agent to send a messagen(;), which is correctly



3.5. 1-Bounded Elementary System Nets

39

finish; return,.

confirmed,

confirmed;

return; finish,

Figure 3.6: With crosstalk: errors possible

received and confirmed by the right agentnaply,.. The right
agent then returns to its initial state and sends a message vi
send,. Now the left agent finds a confirmationoffirmed.,)
alongside a new messagsi(ft,), which it cannot identify as
already belonging to the next turn. Instead, it falsely geco
nizes crosstalk.

Figure 3.7 solves the problem by adding another message
type (inished). This system is actually correct — what that
means exactly is covered in Chapter 12.

Figure 3.7 showsend; andsend, as cold transitions: no
agent is obliged to send a message. A sent message, however,
has to be processed completely. If the system terminatés, bo
agents have returned to their respective initial Stiée

3.5 1-Bounded Elementary System Nets

Except for the netin Fig. 3.1, all elementary system netgim t
chapter can only reach markings in which each place holds at
most one token. Also, it is often convenient to conceive of



40

Common Special Case: Elementary System Nets

1-bounded elementary
system net

finish; finished; return,

waiting;

return; finished, finish,

Figure 3.7: The crosstalk algorithm

a token as “moving” through a part of the net, for instance
through the three local states of the left (or right) prodess

the system of mutual exclusion. Such system nets have $pecia
properties and analysis methods, which we will cover later o
These nets are so important that they deserve a special name:
an elementary system nét is called 1-boundedif for each
reachable marking/ and each placg of V:

M(p) < 1.

The elementary system nets in Figures 3.2 through 3.7 are all
1-bounded; the system net in Fig. 3.1, obviously, is not.

A marking M of a 1-bounded elementary system net can be
described as a string of marked places. For instafbg, (or
DAE, DEA, etc.) describes the initial marking of the system of
mutual exclusion according to the notation in Fig. 3.8. Two

steps begin with this markingiDE - BDE andADE % ADF.



3.5. 1-Bounded Elementary System Nets

41

Figure 3.8: Mutual exclusion with symbolic denotations



42 Common Special Case: Elementary System Nets

Exercises

1. Add to the system netin Fig. 3.2 a plaamcritical; that holds a token if and only if process
[ is not in the stateritical;.

2. Construct the marking graphs for the system of mutual sxatuand the crosstalk algorithm
using the denotations given in Figs. 3.8 and 3.9.

b | h

Figure 3.9: The crosstalk algortihm from Fig. 3.8 with syriibdenotations

Further Reading

In many, especially older, publications, elementary systets — treated as “the Petri nets” —
constitute the central formalism. Much attention is paiglaxes that accumulate unboundedly
many tokens. After th&hird Advanced Course on Petri Nets1998, a team of authors com-
piled a set of lectures on the rich theory of elementary systets [70]. A uniform description
is given by Priese and Wimmel [61]. In practice, places witlbaundedly many tokens are
needed only rarely.



3.5. 1-Bounded Elementary System Nets 43

Visual Formalisms

Someone who wants to illustrate abstract constructs aatior$ often uses sketches, diagrams
or other graphical notations. Even in the early days of caempscience, finite state machines
were already modeled as graphs, and programs as flow chaitse early 1960s, Petri’s pro-
posal to represent formal models primarily graphicalhheatthan textually was nevertheless
unusual.

Since the advent of state charts in the mid-1980s and of UMhe&ri990s, visual formalisms
have become established for other modeling techniqueslas we

The graphical primitives of Petri nets, that is, the depitif passive and active components
as round and rectangular shapes, as well as the represaraétiausal relations and dynami-
cally changeable objects as arrows and “tokens”, have shaotést of time. They have, in part,
been adopted by the UML community.






Sequential and Distributed Chapter 4
Runs

This chapter covers the question of how to formulate individ
ual runs(e.g.,calculations behavior$ of distributed, reactive
systems, and what insights into a system such runs can grovid

At first, we will examine the very intuitive term ofsequen-
tial run of a system netDistributed runsrequire slightly more
effort in understanding, but also describe the behavioremor
accurately. They form the basis for the concepscénarios
which is covered in the next chapter.

4.1 Sequential Runs

Figure 4.1 shows a technical example of an elementary system
net N. The initial markingAC enables the three transitioas
c andd. Hence, there are three steps starting@n

Ac -2 Bc, AC-%5 D and Ac -3 AE.

We can formulate a run of the system métas a sequence
of steps, starting with the initial markinty/,. Typical runs for
N in Fig. 4.1 are

(1)

a D E Figure 4.1: System neY



46

Sequential and Distributed Runs

finite sequential run

sequential run of the cookie
vending machine in Fig. 2.1

infinite sequential run

and

ac -9, aE -2, BE. (2)

The order ofd anda in (2) is arbitrary. We could also have

chosen

ac 2 gc 9. BE.

We define asequential rurof a system neiV as a sequence
t t
My — M; 2 ...

of steps ofN, starting with the initial marking\/, of N. A
run can be finite or infinite. In Fig. 4.1, the system néhas
infinitely many infinite sequential runs, for instance

ac -4 a2 BE 2 AE 2L (3)

In general, we are interestedéompletauns: A finite run
t1 to tn
My — M, — ... = M,

is completeif M, is a final marking, that is, if\/,, does not
enable any hot transitions. Thus, the runs (1) and (2) are com
plete. Every run ending iBE is indeed complete, but can
nevertheless be extended.

An infinite run is complete if at no point a step with an addi-
tional transition can be inserted. The run (3) is completee T
run

Ac 2Bc Poac @,

is incomplete: a step with an additional transitiorcan be
inserted at any point.

As explained in Sect. 2.8, it is possible to compile the steps
of a system net into a marking graph. Figure 4.2 gives the
marking graph of the system nét shown in Fig. 4.1. An
additional arrow indicates the initial markigp. The dashed
circles indicate the final markings andBE. Each sequential
run of a system neV is a path through the marking graphof
N. Vice versa, each path throughthat starts with the initial
marking M, of IV is an sequential run a¥.



4.2. Tokens as Labeled Places 47

\ﬂg/“ Figure 4.2: Marking graph

Nl of Fig. 4.1

4.2 Tokens as Labeled Places

Next to the representation of a run as a sequence of steps, the
exists the representation as a labeled net with a speaigtstr
ture, calleddistributedrun. These runs are based on the idea
of representing each occurrence of a token in a place as an in-
dividual, labeled place. For a plapeof an elementary system
net, this means:

® represents @p.

The labeled place® and®©, for instance, represent tokens in
the pre-set of the transitianin Fig. 4.1. For the initial marking

of the cookie vending machine shown in Fig. 3.1, we use 12
places: five are respectively labeled witbrage andcounter,

one withinsertion possible, and one witmo signal. Likewise,

for a generic system net, tokens, ..., u, in a placep are
represented by correspondingly labeled places:

represent CETL

For the initial marking of the cookie vending machine shown
in Fig. 2.1, for instance, a total of ten places is used: five of
which take the fornf*D, two the formT and one each
the form@<>, &> and&ED,

4.3 Actions

A distributed run consists aictions An action describes the  action
occurrence of a transition, especially its effect on thestek
involved. Technically, an actior is a loop-free, labeled net



48

Sequential and Distributed Runs

with exactly one transition. The net structure thus takes
the form:

A represents transitiont of an elementary system net if:
e the transitior: of A is labeled with,
e °a represents the tokensin,

e a° represents the tokensih

Exemplary and in graphical notation:

® ® " t

represents °
q

© ® r

Figure 4.3 shows all actions of the mutual exclusion system
shown in Fig. 3.8.

®
Na:®B® . ® -G

®
NC: Ng: ®@——1ld—F
Ne: Nf;

Figure 4.3: The six actions of the mutual exclusion system

For a generic system nét, an action4 represents transi-
tion of N in the modes if:



4.4. Distributed Runs 49

e the transitioru of A is labeled with(¢, 53),
e *arepresents the tokengp, t) for eachp € °t,

e a® represents the tokengt, ¢) for eachg € ¢°.

As an example, consider the transitiom Fig. 2.1 in the mode
g with 5(y) =0 andf(z) = &. Then the following holds:

in the modes.

i

LD
y=bg3 represents
Z: " :

4.4 Distributed Runs

A distributed run consists of actions that are assemblechin a
acyclic fashion. Thus, the basis for a distributed runéaasal
net

A causal netk’ = (P, T, F') has the following characteris-
tics:

causal net

e no place branches: at each place, at noo&tarc starts or D
ends, respectively; <

e no sequence of arcs forms a loop: for each sequence of the

form
koFky .. ko 1Fk, Qﬂﬂ

thus: kg # ky,;

e each sequence of arcs has a first element: thus, there exists
no string that “starts in infinity” and takes the form

... kFK.



50 Sequential and Distributed Runs

The places without an incoming arc form tbetsetof K.

[ inth . .
places inthe The places without an outgoing arc form tked We denote
outset: A=)~ the outset and end BY< and K°, respectively.
end: —()F=> In contrast to a system net, a causal net can very well have

infinitely many elements.

A distributed runof a system neiV is a labeled causal net
distributed run K in which each transition, together with*t and¢*, forms
an action ofN. K thus describes an uninterrupted part of the
behavior ofN.

Figure 4.4 shows a distributed run of the mutual exclusion
system, employing each of the actions shown in Fig. 4.3 ex-
actly once.

The upper chain of arcs consists of the actidfs N, and
N¢ (see Fig. 4.3) and describes a cycle of the left process from
its initial stateA to B andC and back ta\. Likewise, the lower
chain of arcs describes a cycle of the right process fEdmF
andG and back tce.

®+ad-®

Figure 4.4: Distributed run of the mutual exclusion system

In general, a chain of arcs from an elemerib an element
y intuitively describes that causally precedeg. The (three)
occurrences ob in Fig. 4.4 are in accordance with this: the
key is first used by the left process (Waandc), then by the
right one (viae andf) and is again available at the end of the
run. Thus, the actiond/a, Ny, Nc and Ny causally precede
Ne.

On the other handYa and Ny are not linked by a chain of
arcs: they areausally independeritom each other. This also
holds for N¢ and V.

An action can, of course, occur repeatedly in a distributed
run. Figure 4.5 expands Fig. 4.4 by another cycle of the left



4.4. Distributed Runs 51

process, using additional instances of the actidgs N, and

Figure 4.5: Expansion of the distributed run in Fig. 4.4

In general, a distributed run can be infinitely long — just
as a sequential run. Figure 4.6 outlines a run of the mutual
exclusion system in which, at first, the left process becomes
critical. Then it remains in its local state forever, and the
right process executes its cycle infinitely often.

QEGE

© ©®
el“en

Figure 4.6: First once, then infinitely often

A distributed runK of a system netV is completeif and
only if its outset’ K represents the initial state 6f and its end
K° does not enable any hot transitions. For convenience, we
will omit the attribute “complete.” Unless noted otherwigar
the rest of this book, with “distributed run” we always mean
“completedistributed run.”

The endN° of a finite distributed run of a system nat
represents a final state @&f. The end of an infinite run, in
general, does not represent a reachable state. The end of the
run in Fig. 4.6, for instance, consists of only a single place
(labeleda).

Figure 4.7 shows a partial distributed run of the cookie vend
ing machine shown in Fig. 2.1. The run describes exactly one

complete distributed run



52 Sequential and Distributed Runs

/

Pang i
H‘; =

ﬁg
5§

X27

;
y
5

Figure 4.7: A partial distributed run of the cookie vendingahine shown
in Fig. 2.1

sale, from the insertion of the coin until the withdrawal wbt
cookie packets.

Figure 4.8 outlines the two finite and the — only — infinite
distributed sequence of the elementary system net shown in
Fig. 4.1.

5

©

:

%

®
©

m® O

:

Figure 4.8: The many finite and the one infinite run to Fig. 4.1



4.5. Example: A Bell Clock 53

4.5 Example: A Bell Clock

Figure 4.9 shows a minute clock: A counter is repeatedly in- actions of the minute clock
cremented byl and reset t@ after 60 increments. The place
p always holds exactly one token, a natural number betweenxiss
0 and59. Starting with58, the transitiort always increments
this number byt, until it is set from59 to 0. u

@ @

X 59 t_
EdoWESE
t

X+ P 0 u Figure 4.9: The minute clock

For a system net with such a simple structure, the distribute
runs resemble the sequential runs. The net in Fig. 4.9 has ex-
actly one distributed run:

O OO B e B O T O

Figure 4.10 adds bells to the minute clock, which will start
chiming at the beginning of every new hour (transitignThe
end of the bell chimes is not linked to the clock. Figure 4.10
only specifies that the chimes have stopped (transit)doe-
fore the next full hour. The transitionsandv occur indepen-
dently from each other. This is also shown by the bell clock’s
— only — distributed run in Fig. 4.11.

Figure 4.10:
The bell clock

Figure 4.11: Run of the bell clock



54

Sequential and Distributed Runs

4.6 The Kindergarten Game

Thekindergarten games the distributed version of a program
used by Dijkstra [20] to demonstrate the use of formal vexific
tion techniques. We use this distributed variant as an el@amp
to show the uses of Petri nets and distributed runs (and ver-
ify them in Sect. 13.10). Dijkstra assumeseagent playing
with given objects (pebbles). We assume the pebbles them-
selves to be agents and therefore replace them with chjldren
for descriptive purposes.

The kindergarten game starts out with an arbitrary number
of children in a playing area. Each child is dressed in either
black or white. At any one time, two children can sponta-
neously leave the playing area together. After that, onlkel chi
returns, according to the following rules:

e Ifthe children are dressed in different colors, the oneskds
in white returns;

e If the children are dressed in the same color, a child dressed
in black returns (if both are dressed in white, one child
changes).

We want to develop an appropriate model for this game.
To do this, we construct a plaahildren, with the group of
children as initial marking. If we depict a child dressed liadix
or white ase or o, respectively, and abbreviateh(ldren, ) and
(children, o) ase ando, respectively, then Fig. 4.12 shows the
three possible actions of the game.

L]

o

Figure 4.12: The three actions of the kindergarten game

Figure 4.13 models the entire game. As initial marking, a
finite number of children, each dressed in either black otayhi
is assumed. Each transition in Fig. 4.13 is hot. Thus, a run
terminates only if no transition is enabled, which means tha
only one child remains. The three runs in Fig. 4.14 all start
with the initial marking/,(children) = [0, 0,0, e, o].

Y ) Y Y



4.7. Causal Order

Figure 4.13: Model of the
kindergarten game

o O.
O .

: 9 - :
' K1 .

3

o

| ] .
t1 o

T )

Figure 4.14: Three distributed runs of the kindergartenggam

To what extent the color of the last remaining child’s clathe
depends on the initial marking and the structure of the @spe
tive run is covered in Sect. 13.10.

4.7 Causal Order

In contrast to sequential runs, distributed runs showcthesal
relations of actions. Fig. 4.15 exemplifies this with twotsys
nets, both of which have the same sequential runs:

ACE -2 BcE 2. BDE and

ACE 2 ADE -2, BDE.

Their distributed runs, however, are distinc¢Y; has a single
distributed run, shown in Fig. 4.16V,., on the other hand, has
two distributed runs, shown in Fig. 4.17.



56

Sequential and Distributed Runs

o

causal order

cO—F—0Op ¢ D

b b
a andb independent N,: aandb in arbitrary
from each other order

Figure 4.15: Independence and arbitrary order

® 2] ®
®
© [b] ©)

Figure 4.16: The distributed run o6f;

®
®
-©

Figure 4.17: The distributed runs of,.

In N,, the placeE can be seen as a model of a resource that
is used, but not usedp. This forces the two actions afandb
into one of two possible orders.

If an actiona generates tokens that are used by another ac-
tion /3, thena causally precedes. This “causally precedes”
relation is, of course, transitive: if precedeg andj precedes
v, thena also precedes. Furthermoregcausally precedes
irreflexive: no action causally precede itself. Thaoausally
precedess a strict partial order.

In general, this order is indeed not total: An actibmay
occur independently fron®. However, this does not imply
thato and /s occur simultaneously. Simultaneity is transitive;
independence is not.



4.8. The Composition of Distributed Runs 57

The relation between the sequential and the distributesl run
of a system neilv becomes evident if, in every distributed run
K of N, the corresponding tokens are put in the placediin
Thus, K itself becomes a system net with an initial marking.

In this case, every sequential run &fis also a sequential
run of N. The runK; in Fig. 4.14 is an example of this. It
generates the two sequential runs in Fig. 4.18.

Vice versa, every sequential run@fis generated by at least
one distributed rur of N.

[.’.7.7070] L> [.7.7070] i> [.,0,0] L) [070] £> [.}

t1

[0,0,0,0,0 25 [0,0,0, 0] 5 [e,0,0] —L [0, 0] 2+ [e]

Figure 4.18: The two sequential runs generateddhy

4.8 The Composition of Distributed Runs

Let K andL be two distributed runs. Themompositionx - L

is formed by identifying the end of K with the outset L

of L. To do this, K° and°L have to represent the same mark-
ing. K - L contains all the elements ¢f and L and retains
their order. Figure 4.19 shows two composable rénsnd

L of the mutual exclusion system. An initial segment of their
compositionk - L is shown in Fig. 4.5.

eaemee
. )
® E-Ad-E{e~O~{]

run X run L

Figure 4.19: Two composable runs

If K andL can be composed, the rdn- L is defined as composition
(PK UPL,TK UTL,FK UFL).



58 Sequential and Distributed Runs

Exercises

1. Consider the system net in Fig. 4.20:

Figure 4.20: System néY

(a) Determine the number of
(1) infinite sequential runs,
(2) infinite distributed runs,
(3) finite sequential runs,
(4) finite distributed runs.

(b) Which of the answers to (a) change if one of the four tramsstis assumed to be
cold?

(c) Compare the runs of the system nets in Fig. 4.20 and Fig. 4.1

2.  (a) Specify the actions of the system nétn Fig. 3.3.
(b) Characterize all distributed runs of.

3. Consider the bell clock in Fig. 4.10:
(a) Expand the bell clock by a place that shows the current between 1 and 12.
Modify the chimes so that on eaeidth hour, the bell chimes times.

(b) Modify the bell clock so that when the tokebs, 30, 45 and0 are reached in place
p, the bell chimes once, twice, three times and four timepeaets/ely.

* (c) Now combine the two system nets from (a) and (b) so thagahnth hour, the bell
first chimes four times and then, after a pausémes.

(d) Construct finite initial segments of the runs of all suk$as

4. Prove the following:
If J can be composed witR', and K with L, then(J - K)-L=J- (K - L).



4.8. The Composition of Distributed Runs 59

Further Reading

In the literature, sequential runs are by far the predonif@malism. They are technically

simple, sufficient to model many situations, and satisfydgh@mon intuition that events occur
along a global time scale, or are mapped onto such a scale dysanver. From the beginning,
the concept of a distributed run, that is, a partially ordeset of local states and transitions,
has been an important part of the theory of Petri nets [3@]. [l 1981, Nielsen, Plotkin and

Winskel [54] put distributed runs in the context of the matia¢ical structures of other system
models. In 1988, Best and Fernandez discussed a multitudgations between system nets
and distributed runs [10]. Two aspects of distributed ruegparticularly important today: their

use in scenarios (Chapter 5) and their contribution to thercbof the state space explosion
during verification through model checking [49], [77]. Tetenteresting characteristics of a
system, this process compiles sufficiently long initialreegts of all its distributed runs (that
start with the inital marking) into a tree-like structuréhi3 structure is then efficiently analyzed.
Esparza and Heljanko [23] have shown numerous proof teaksigased on temporal logic that
make use of this structure.



60

Sequential and Distributed Runs




4.8. The Composition of Distributed Runs 61

Read and Write vs. Give and Take

Conventional representations of algorithms, especiallywentional programming languages,
use memory cells, which store their respective currenteshs state components. Dynamic
behavior is described as a value assignment of the form:

xo = f(xo,...,Tn).

Depending on the current values in the memory cejls .., z,,, the cellz, receives a new
value. The previous value in, is then not accessible anymore. “Read and (over)write” are
thus the basic operations of programs. For many algorithinis js intuitive and appropriate,
for example, in Euclid’s algorithm for computing the gresiteommon divisor of two natural
numbers. However, different algorithms have differenidaperations, for example, the send-
ing and receiving of messages or objects. Therefore, Retgiuse a different approach: a state
component is — intuitively — an object in a certain locati@ynamic behavior moves objects
from one location to another. Some objects may be createdifgofrom an unmodeled envi-
ronment) or they may disappear (into it) during the procé&ssis, “give and take” are the basic
operations here.

This prompts us to try to translate programs into Petri netsvéce versa: each variaktan
a program corresponds to a plasein a system neidv, and the current valug in z corresponds
to a token inp,. The reading ot is simulated with a transitionand a loop betweep, andt:

X
X

In a concurrent program with two processes, a second prate$svould generate a second
loop betweerp, and a second transitiah

1 @ L
p.

z

In each run ofV, the transitions andt’ can occur arbitrarily often, but always one after another
and never independently. For examplenay occur infinitely often and bloak This contradicts
the assumption that processes can read a variable indepgngé@hout interfering with each
other. If the updating of the variabieis also modeled as a loop between a transiti@nd the
placep, the updating transitioti can be blocked by the reading transitipm contradiction to
the common assumption of concurrent programming in whietupidating of a variable is never



62 Sequential and Distributed Runs

blocked by the reading of the variable. This observationfaggseaching consequences, some
of which will become apparent in the case study of the mutkelusion system in Chap. 20.

The translation of a system nat into a programP synchronizes the transitions of into
one or more control flows. The structure

of N generates (among others) a distributed run in whexhdt occur independently from each
other. A corresponding program would have to organize thelarminism betweenands
and betweemands and thus force ands under a central control.

Finally, programming languages and many other operatioaleling techniques allow for
multiple control flows They are, if necessary, dynamically created or terminatatirarely
reach the necessary flexibility to model, for example, tHatgm to the kindergarten game in
Fig. 4.13.



Scenarios Chapter 5

A user of a technical or organizational system usually da¢s n
need each and every possible behavior of the system. The work
is often limited to a few activities that are repeatedly ened.
Therefore, it is convenient to consider typica@enariosof a
system. A scenario consists of a finite number of elementary
actions and terminates in the same state in which it started.
Because of this, multipléenstancesof a scenario can occur
multiple times in the same run. A scenario often describes an
interaction pattern between a process and its environroent,
between two processes.

Typical scenarios of the systems considered thus far are:
¢ selling a packet of cookies,
e Visiting one’s critical state once,
e sending a message.

Technically, a scenario is constructed as a finite distedbut
run, whose final marking equals its initial marking. A run of
a distributed, reactive system is often composed of many in-
stances of only a few scenarios. dferyrun can essentially
be constructed like this, the systensienario-basedUnder-
standing the scenarios of a system is often the easiest way to
understand the entire system. We will illustrate this ushey
examples of the mutual exclusion system, the crosstalk algo
rithm and the cookie vending machine.

5.1 Defining Scenarios

A scenarioof a system nelV is a finite partial distributed run  scenario
K of N in which the outset; K, and the end/°, represent
the same marking.



64 Scenarios

Figure 5.1 shows two scenarios of the mutual exclusion sys-
tem: one for the left and one for the right process. Each goce
passes through the cycle lotal, to waiting andcritical, back
to local. The kindergarten game (Sect. 4.6) is an example of a
system net without scenarios.

®—a~® b ~O)+~®
® ©
®
®
(D) (D)

Figure 5.1: The two scenarios of the mutual exclusion system

From the definition of the composition of distributed runs in
Sect. 4.8 it follows that arbitrarily many instancks, . . ., K,
of different scenarios with the same initial and final coioais
can be assembled into a finite or infinite partial distributed

Ky-... K, or Kg-Ky-...,

respectively. For example, each finite distributed run ef th
mutual exclusion system shown in Fig. 3.2 can be assembled
from instances of the two scenarios shown in Fig. 5.1.

scenario-based system net A system netN is scenario-basedf there exists a finite
set A of scenarios such that each complete finite or infinite
distributed run ofV can be written as

Ki-Ky-...-K, or Ki-Ky-...,

respectively, where each; is a scenario inA. Multiple in-
stances of the same scenario may, of course, occur in the same
run. Occasionally, a run may also have an irregular initral o
final segments, or K,,, respectively.



5.2. The Scenarios of the Crosstalk Algorithm 65

The mutual exclusion system is obviously scenario-based:
the two scenarios shown in Fig. 5.1 suffice. An infinite run
may also contain an instance of the actzoor d.

5.2 The Scenarios of the Crosstalk Al-
gorithm

The two processes and r of the crosstalk algorithm from
Chap. 3 (Fig. 3.7) cooperate in three scenarios:

e [ sendsy receives;
e 1 sends] receives;

e both send and receive, and crosstalk occurs.

One may assume a more abstract view and summarize the first
two scenarios as “one sends, one receives”.

Figure 5.2: The three scenarios of the crosstalk algorithm



66

Scenarios

Figure 5.2 shows the three scenarios of the algorithm with
the symbolic denotations from Fig. 3.8. The crosstalk algo-
rithm is scenario-based: each distributed run consistdioita
or infinite number of instances of the three scenarios shawn i
Fig. 5.2.

5.3 The Scenarios of the Cookie Vend-
ing Machine

The cookie vending machine from Chap. 1 and 2 has only one
scenario: the return of an inserted coin. Figure 5.3 shoiss th
scenario for the version of the machine shown in Fig. 2.1.

e E Figure 5.3:  Scenario of the
cookie vending machine

Intuitively, one might also consider selling a cookie pdacke
as a scenario. In its outset, a coin can be inserted, no signal
is pending, and the compartment is empty. The partial run in
Fig. 4.7 shows this behavior of the cookie vending machine.
To form a complete scenario, the tokens in the counter, the
cash box and the storage would have to match in the outset
and at the end. To also cover such cases, we will weaken the
definition of a scenario of a system ngt

A scenario for a marking/ of IV is a finite partial dis-
tributed runK of N in which a part of’ K and a part ofK°
represent the markingy/. Figure 4.7 thus shows a scenario of
the cookie vending machine for a markifg with M (D) =
M (G) = [e]. Figure 5.4 shows another such scenario. Both
can be composed to form the partial run shown in Fig. 5.5.



5.3. The Scenarios of the Cookie Vending Machine 67

;
R G
<> o[ @D 5
) <
&

na
]

na
]

Figure 5.5: Distributed run of the cookie vending machiremposed of
the scenarios for the marking/ (D) = M(G) = [e] shown in Figs. 4.7
and 5.4




68 Scenarios

Exercises

1. (a) How many scenarios does the algorithm in Fig. 3.3 h&ie& one.
(b) How many finite sequential runs does that scenario deseri

2. Does the system net in Fig. 5.6 have scenarios? Is it Soelnased?

E

B

Figure 5.6: System net

3. (a) Construct a scenario for the system net in Fig. 5.7.

Figure 5.7: System net

(b) Is the system net scenario-based?

Further Reading

Thinking in scenarioscan significantly simplify and deepen our understanding obmplex
system. In connection with Petri nets, Desel [16], in patéc has proposed the use of sce-
narios. Message sequence chadsscribe scenarios very explicitly. They form the basis of a
modeling and simulation technique in [35].



5.3. The Scenarios of the Cookie Vending Machine 69

Scenario-Based System Nets

The term “scenario” is not used very consistently in the figlsoftware engineering. In general,
the term “scenario” is used to describe a coherent sectidelodvior that is contiguous from
the observer’s perspective. Typically, a scenario is usetactively to reach a goal. From the
perspective of the system architecture, a scenario géyneoaters several components and only
uses a part of each component. A scenario is usuedlgtive because it needs input from the
environment during its process. In the mutual exclusioniesysand the crosstalk algorithm,
all scenarios have this characteristic. This also holdgHerexample of the cookie vending
machine if the machine and each user are considered to beooemis.

Because scenarios describe the behavior that a user hampeadifor a specific system, it
would be most useful if one could derive a system from a gietroscenarios. In the above
systems of the crosstalk algorithm, the cookie vending mm&dnd the mutual exclusion system
can, in fact, be derived from the corresponding scenariaoddatifying elements with the same
denotations. Harel greatly extends this idea for Live Sagaé&harts [35] and integrates it into
a tool.






Further Notations for for Chapter 6
Elementary System Nets

In the literature, elementary system nets are often extehye
additional notations, especialbapacities(“no transition can

add an(n + 1)th token to a place”) and arc weights (# to-

kens simultaneously flow through an arc”). We will discuss
both of these extensions and show that they do not increase th
expressiveness of elementary system nets: they can be simu-
lated and are thus merely syntactic sugar. Occasionaliy, it
possible to use capacities and arc weights to constructinery
tuitive and clear models. In such cases, they should ddfinite
be used.

However, a transition that is supposed to “test” the number
of tokens in a place, or that should be given priority in cese o
conflict, is a different matter: such things cannot be sitaada
within the bounds of elementary system nets.

6.1 Place Capacities

One occasionally wants to express that a plaoan hold at
mostn tokens, and that a transitigrthat would add arn +
1)th token should thus not be enabled. In the graphical rep-
resentation of a system néf, the placep could be labeled
accordingly

t

p

and the conditions for the enabling ofin a markingM be
expanded by (p) <n — 1.
This does not increase the expressiveness of elementary sys
tem nets. To show this, |eY be an elementary system net in-
cluding a placep with a capacity of.. A marking M of N is n-bounded marking



72

Further Notations for Elementary System Nets

n-reachable marking

n-complement op

N’n

calledn-boundedf
M(p) < n.

In particular, let the initial marking/, of N be n-bounded.
We now construct an elementary system Nétsuch that the
reachable bounded marking$ of N and the markingd/’ of

N’ unambiguously correspond to each other, and that for all
bounded marking8/; and M of N the following holds:

M, 55 M, is a step ofV iff "

M, - M} is a step ofV'.
N’ consists ofN, expanded by a plagg. For each transition

t of N that is not connected tp by a loop, N’ contains an
additional arc of the form

o (t,p)if (p,t)is an arc ofN,
e (p,t)if (t,p)is an arc ofN.
The initial marking)M, of N is expanded inV’ by
Mo(p') = n — Mo(p).
The placey’ is then thecomplemenof p. Figure 6.1 shows

this construction. Proposition (1) now follows directlyoin
the step rule for transitions.

capacity = 3

=y

4

capacity = 3

g
T

t3

Figure 6.1: Complememt’ of p



6.2. Arc Weights 73

6.2 Arc Weights

Occasionally, a model is needed that only contains black to-

kens (like elementary system nets), but still adds to or k&0

from a place more than one token during a single step (which

is easily achieved for the generic system nets in Chap. 2). To w-step
graphically represent such a net, the corresponding ag: is |

beled with the corresponding factar¢ weigh). Figure 6.2

shows an example: when all the packets have been sold, the
money is taken from the cash box, the storage is refilled and

the counter is reset

storage

compart- take
ment packet

return insertion
coin possible

&

counter c

Figure 6.2: Expansion of Fig. 3.1 by refilling the storagenwviitpackets

An elementary system né{ with arc weights can, as with
place capacities, also be simulated by a Nétwithout arc
weights. However)N and N’ are not related as closely any-
more: N’ contains additional places and transitions, and a sin-
gle step ofN is simulated by a sequence of steps\df To be
precise, a sequential run

w-generalization

t t tr
My — M; 2% ... 2 M,

of NV is called areductionof a sequential run n-reduction

YRR Y R Ny V)
of N’ if the sequence, ..., is generated from the sequence
ty ...t by eliminating from¢] . . . t;, all the transitions that are



74

Further Notations for Elementary System Nets

notin N. The netN’ is now constructed such that:

The sequential runs af are the
reductions of the sequential runs &f.

(@)

For the construction olV’, each place of N is replaced by a
sequence of places and transitions. Figure 6.3 shows artexam
ple of this. There the step sequence

My 5 My 25 My 25 My
in N is a reduction of the step sequence

t t 3 3
T L B e

in N'. Other step sequences ¥ may generate the same re-
duction.

Figure 6.3: Technical example of the simulation of arc wisgh

The general procedure for constructiNgfrom N replaces
each place with a sequence

OO0 00

P4 P2 Pn+m-1

of places and transitions. Its length+ m — 1 results from
the greatest weights andm of arcs that end and start
respectively. In Fig. 6.3 thus = 2 andm = 3, which results



6.3. Real Extensions 75

in2+3—1 = 4. Furthermore, for all places,. 1, . . ., Prim_1
a capacity of 1 is required. In Fig. 6.3 those are the plages
andp;,.

Each ardt, p) of N that ends irp with an arc weight ot is
replaced inV’ with k arcs of the forn{t, p1), .. ., (£, px). Like-
wise, each ar¢p, «) of N that starts irp with an arc weight
of [ is replaced inN’ with [ arcs of the form(p,, ., u), ...,
(Pnim—1,w). The initial markingM,(p) of N is assigned to
My (py) of N'.

cap. =1

Figure 6.4: Simulation of arc weights

Figure 6.4 outlines this construction. It is easy to show tha
this construction satisfies (2). In the special case ef m =
1, the construction leaves the plgeand its surroundings un-
changed.

6.3 Real Extensions

A transitiont of an elementary system nét is a > n-tester
of a placep if for each markingM the following holds: M
enableg if

M(p) = n. 3)

n
\/pOQDt
n

In the construction

(4)



76

Further Notations for Elementary System Nets

t is obviously a> n-tester ofp. If ¢ is already a transition of
N, this construction also implements the conditiprcontains
at leastn tokens” for the occurrence of

The construction of & n-tester ofp analogous to (3) is
not so simple. If a capacity > n is already known fop, the
complemenp’ (cf. Section 6.1) can be tested for“k — n”
instead:

PO PO O

Becausel (p) + M (p') = k for each marking\/, it follows
thatM (p) < niff M(p') >k —n.

If pis unbounded, no complement can be constructed and
this method fails. For an unbounded placeo “tester” transi-
tion ¢t can be constructed that tests fai(p) = 0, M(p) < n
or M(p) = n analogous to (4). Closely related to the test for
“= 0" is the increase of expressiveness by means of inhibitor
arcs. Aninhibitor arc (¢, p) requires for the enabling afthat
p does not contain any tokens. Reset arcs also increase the
expressiveness of elementary system netseskt arc(¢, p)
removes all tokens from at the occurrence at

Priorities are another example of real extensions: deidu
be two transitions of an elementary system net. The transiti
takespriority overuw if ¢ always occurs whenever a marking
enables both andu. As with the test for “0”, priorities cannot
be simulated by elementary system netsahdu are adjacent
to an unbounded place. Also, priorities are not compatilifle w
the concept of distributed runs.



6.3. Real Extensions 77

Exercises

*1. Develop a procedure to simulate a system net with capaaind arc weights with an ele-
mentary system net. Apply your procedure to the system Heging.5.

Hint: At first, generalize the concept of the complement oflace from Section 6.1 to

include arc weights. Then, analogously to the approach ai&e6.1, use this to construct
a system net without capacities, but with arc weights. Sateuthis system net using the
method in Section 6.2. The result is a system net without a&ights, but with capacities.

Eliminate the capacities following the procedure in Settdl.

] Figure 6.5: System net with capacity and arc
p— capacity = 5 weights

2. Convert the cookie vending machine in Fig. 6.2 into an efearg system net. As a simpli-
fication, you may limit the filling of the storage to three toke

Further Reading

The novice modeler sometimes perceives the rule for theromuee of transitions as limiting
and cumbersome. Various ways of altering, generalizingktereling it come to mind. Sec-
tion 6.3 shows a few such extensions. However, such addltiexpressiveness comes at a
price: the models quickly become difficult to comprehend,¢bmbination of such concepts is
prone to inconsistency, and many analysis techniquestfarsh However, some can be newly
devised. An example of this is Busi’s analysis of inhibitocsaf11]. Among the many other
variants and generalizations, three are particularly@sting:

Montanari and Rossi [52] proposentext placesA context place can be accessed by mul-
tiple transitions simultaneously without hindrance. Tleay, for instance, be used to solve the
problem described in the postscript to ChapteRéad and Write vs. Give and Take

So-calledself-modifyingPetri nets, proposed by Valk in [75], employ arcs wdriablearc
weights. The actual weight of an arc then corresponds touhemt number of tokens in one
of the net’s places.

The authors of [18] propose specggjnal arcsbetween transitions. With such an arc be-
tweent andu, the two transitions will occusimultaneouslyf both are enabled. If only is
enabled, then only will occur. Such behaviour can be simulated with inhibitocsa A good



78 Further Notations for Elementary System Nets

historic overview over different extensions can be founthamAdvanced Courses on Petri Nets
[70, 18].

A range of publications pursue the idea of tokens with a gppatiucture and of using this
structure for the formulation of the occurrence rule andlieranalysis of system characteristics.
An example of this is the “nets as tokens” concept proposedaltiy[76].



The Synthesis Problem Chapter 7

A system is often modeled by a description of its observable
behavior, that is, global states and steps. However, toempl
ment a system, it is often more practical to identdgal state
components and actions whose cause and effect are limited to
a few state components. At first, we will discuss this problem
using the example of the light/fan system, and then give the
problem a precise form and solve it in the rest of this chapter
The techniques presented here will be used in the case study i
Chapter 21 to systematically create an asynchronous hagdwar
architecture.

7.1 Example: The Light/Fan System

The reader is probably familiar with the common connection
between lighting and air ventilation in (windowless) bathms:
If the light is switched on while the fan is off, the latter Wil
start as well after some time. If the light is then switchefd of
the fan will continue running for some time. If the fan is off
and the light is first switched on and then quickly switchefd of
again, the fan will not start at all. If the fan is running ahe t
light is switched off and then quickly switched on again, the
fan will continue running without interruption.

Traditionally, systems are often modeledséaste automata
a state automaton consistssttesandsteps One state is the
initial state Every step transforms one state into another and
thereby executes an action. Several steps may quite well exe
cute one and the sanaetion Technically, a state automaton
can be described as a graph, with states as nodes and steps as
labeled edges.

Figure 7.1 shows the behavior of the light/fan system as a
state automatow. It has four global states and four actions,



80

The Synthesis Problem

fan stops
S lightoff  <— T—  lightoff
fan off fan running
switch switch switch switch
light off light on light off light on
light on light on
fan off -~ " fanrunning
fan starts

Figure 7.1: The light/fan system as a state automaton

two of which (switch light on andswitch light off) can occur in
two states each.

Figure 7.2 shows the system as an elementary system net
N. It has four places describing theral states as well as four
transitions, one for each action of the system.

The representation as a system net clearly describes the cau
and effect of each actioswitch light off, for example, can only
occur if the light is on. The current state of the fan is irvalet
for this action. The fan itself, however, only starts if itnst
running and the light is on at the same time.

In Fig. 7.2, we have modeled the switching of the light as
cold transitions, since nobody is forced to use the light switch.
The fan is a different matter. It has to react appropriat€he

light off fan stops

switch
light off

light on fan starts

Figure 7.2: The light/fan system as an elementary system net



7.2. The General Question of the Synthesis Problem 81

¥>. 4>.

V// Figure 7.3: Abstract state au-
.

tomatonz;

difference between hot and cold transitions is not modeaied i
Fig. 7.1, and it is irrelevant for the rest of this chapter.

It is easy to determine that the system Aehas the exact
same behavior as the state automatonone constructs the
marking graph ofV (Section 2.8) and asserts that it is identical
to Z. Thesynthesis problem df is the search for a technique
to derive N from Z.

7.2 The General Question of the Syn-
thesis Problem

Each state of the light/fan state automaton in Fig. 7.1 isl&b
with two conditions. These conditions form places in Fi@. 7.
In general, however, there is no information on the states of
state automatow. It is abstract as in Fig. 7.3. Every edge of
such an automaton is labeled with action The same action
may occur on more than one edge.

The synthesis problerof any (abstract) state automatén
is the search for distributed systent’ that behaves exactly
like Z. Instead of global states, orllycal states may appear in
V. Every action appearing if has to be described completely
and unambiguously through its effect on a few local states in
V. To constructively solve this problem, we restrict the gand
dates for// to 1-bounded elementary system nets. In doing so,
V behaves like” if the marking grapl; of V' is isomorphic to
Z. G is isomorphic toZ if every nodek of G maps to exactly
one nodé:’ of Z such that:

¢ the initial marking ofGG is mapped to the initial state df,

e h -5 kisastepinyiff B —= k' is a step inZ.



82

The Synthesis Problem

To summarize: a system n&tsolves the synthesis problem
of a given (abstract) state automatdrf the marking grapttz
of N is isomorphic taZ.

There exist state automatawhose synthesis problem can-
not be solved by any-bounded elementary system net. An
example is the state automatenn Fig. 7.4.

. e
U S A
e d b, A

State automaton L State automaton R

Figure 7.4: The synthesis problem of L is solvable; that of Rat solvable

7.3 Regions of State Automata

In the following, we will develop an algorithm that takes atst
automator” and decides whether there exists-hounded el-
ementary system neY that solves the synthesis problem of
Z. If it is solvable, a solution that is “as small as possibe” i
constructed. The construction does not take into accoent th
difference between hot and cold transitions. State aumat
have an initial state but no final states.

To do this, for a given state automatéh a systemn is
constructed. If the marking grapfl of N is isomorphic to
7, then N is the sought-after solution. Otherwise, a theorem
guarantees that no solution exists.

First of all, we have to decide which characteristicgafan
be used for the construction of. Apart from its structure as
a directed graphZ is characterized particularly by edges with
the same labelings. After all, from the set of edges thatare |
beled with a symbal, asingletransitiont has to be derived for
N. Therefore, the starting nodes of those edges — if appbgabl



7.4. The System Net of a State Automaton 83

together with other nodes &f — represent a place M.

Put more generally, a set of nodes€an represent a place
in N. To find such sets of nodes, we define the following terms:

Let Z be a state automaton, I8 be a nonempty subset of

its nodes and let R
T h -k ;
be an edge of (“t-edge”). We define: h k .
h———
R receivesr, if h¢ Randk € R Bt g
R dispatchesr, if h € Randk € R k
R containsr, if he Randk € R h—t ok

R is aregion of Z if for each edge labelingof Z:
e R receives either each or needge and .
region
e R dispatches either each or n@dge.

Aregion R of Z is minimalif no proper subset oR is a region

of Z
Figure 7.5 shows some of the regions of the state automaton //‘
7y from Fig. 7.3. Figure 7.6 shows the minimal regionsZf //

. 4, e Rj no regions

// R2 minimal region
.

Figure 7.5: Three regions of the state automaten ik, and R, are mini-
mal; R3 is not.

7.4 The System Net of a State Automa-
ton

Using the following procedure, we construct from a giveresta
automator” an elementary system nat, thesystem net of’:



84 The Synthesis Problem

f g 4
R : //\ A

D

B Figure 7.6: The minimal regions of
E 7
: . | |
egion A e e each minimal regiomp of Z is a place ofV;
' L e each edge labelingoccurring inZ is a transition ofV;
e if a regionp receives the-edges of7Z, then(t, p) is an arc
{ of N;
regionB: " @
J .‘/ \. e if a regionp dispatches thé-edges ofZ, then(p, ) is an
arc of N;
) e if a regionp contains all the-edges of7, then(¢, p) and
. _ . (p,t) are arcs ofV
region C: \:
. e if the initial state ofZ lies within a regiorp of Z, the place
p of N holds a token.
e .
region D:  *.. Figure 4.1 shows the system net of the state autom&fon
N shown in Fig. 7.3, with its minimal regions, . .., E shown in

Fig.7.6.

7.5 The Solution to the Synthesis Prob-
lem

The following Synthesis Theorer the basis for the solution
to the synthesis problem:

Theorem 1 (Synthesis Theorem)f the synthesis problem of
system net of a state automaton 5 state qutomatot can be solved by &bounded elementary
system net, then the system nefa$ a solution.



7.6. The Synthesis Problem of the Light/Fan State Automaton 85

With this, it is possible to solve the general synthesis prob a c
lem: one constructs the system iéf a given state automa-
ton Z and from this the marking grap@ of N. If Z andG

are isomorphic/V obviously solves the synthesis problem of B D
7. Otherwise, the synthesis problem.ftannot be solved by b
any 1-bounded elementary system net. system netV, of Z
7.6 The Synthesis Problem of the Light/Fan {
AB
State Automaton 2 e
o _ _ Gi' ap BC
To simplify the argument, we use an abridged version of the Q\
denotations of the light/fan system, as shown in Fig. 7.7. -
\'A —° marking graph ofVy
minimal regions:
bl Ja bl Ja {A,B},{A,D},{B,C}.{C,D}
B q C 7 e 2 o0 % .o
Figure 7.7: Abridgment of Fig. 7.1 the system net of’:

This state automaton has four minimal regions. Following @Da
to the procedure explained above, the system netin Figs7.8 i a5 not solve the synthesis

constructed. problem ofZ

{A,D}

{B.C}

Figure 7.8: Solution to the synthesis problem of the stateraaton in
Fig. 7.7

The construction of its marking graph is left to the reader,
as well as ascertaining that the graph is isomorphic to Figy. 7



86

The Synthesis Problem

With this, Fig. 7.8 solves the synthesis problem of the state
automaton in Fig. 7.7. Changing the abridged denotations in

Fig. 7.8 back to their longer versions, in fact, results ia th
system net shown in Fig. 7.2.



7.6. The Synthesis Problem of the Light/Fan State Automaton 87

Exercises

1. Show that in Fig. 7.4 the synthesis problem for L is solgabut the one for R is not.

2. Solve the synthesis problem for the state automaton N7y

k‘ Figure 7.10: State automaton with easy synthesis prob-
lem

Figure 7.9: State automaton

3. Why is the solution to the synthesis problem for the stateraaton in Fig. 7.10 especially
easy?

4. |Is the elementary system net in Fig. 7.11 a solution to yimthesis problem of a state
automaton?

»oi»oi»o

Figure 7.12: State automaton

Figure 7.11: System net

5. The synthesis problem for the state automaton in Fig. ¢dr#hot be solved by any
1-bounded elementary system net. This is shown in the mafgBect. 7.5. Construct
an elementary system net whose marking graph is isomorphiicet state automaton in
Fig. 7.12.



88 The Synthesis Problem

Further Reading

The solution to the synthesis problem belongs to those sateries in the field of Petri nets
that emerged only slowly. Now, however, it belongs — in vasioversions — to the standard
repertoire of most Petri net analysis tools.

As early as the late 1970s, Carl Adam Petri knew how to reveakrilate anyl-bounded
elementary system né{ from its marking grapl:: a state setl of G forms a place inV if
either all or no edges af that have the same label either start or end irtHe did not consider
this to be particularly interesting, however, becaugg#aces of/N would result in2" nodes in
G and thu?" state sets — an unmanageable situation.

In the mid-1980s, Ehrenfeucht and Rozenberg [21] solved yththssis problem of loop-
free,1-bounded elementary system nets as an example of use fof 2REheory”. To do this,
they useall regions of a given state automaton for the construction gsges net. It was not
until 1993 that Bernardinello [8] confirmed the assumptioat tthe minimal regions suffice.
Only with this restriction does the region theory becomeblesan practice. By using only the
minimal regions, nets of manageable sizes are constructed.

Many authors took part in generalizing tidboundedness in Theorem 1 to generic elemen-
tary system nets and in including even inhibitor edges. Wit the synthesis problem of much
more general graphs becomes solvable. The most importtrdratinclude Badouel, Bergen-
thum, Busi, Cortadella, Darondeau, Desel, Gunther, Hoadehss, Kishinevsky, Kleijn, Kon-
tratyev, Lavagno, Lorenz, Mauser, Mukund, Pietkiewicaiiy, Pinna, Thiagarajan, van der
Aalst and Yakovlev. An overview of these developments caifobed in [45]. Also very in-
teresting for practical purposes is a reduction of the Gatéor the solution to the synthesis
problem: A system nelv solves a reduced synthesis problem of a state autoniatibrihe
marking graph of N is not necessarily isomorphic 16, but if G andZ are bisimular or fulfill
some other simulation relation. In [12], for instance, oalpisimulation is required between
the state automatao# and the marking graph of the synthesized NetAdditionally, the tran-
sitions of N may be labeled. Then, one actionsfcan be implemented by several transitions
of N. Lastly, it is possible to require special characteristit$/, for instance, the free-choice
characteristic from Chapter 16. [78] solves the synthesablpm of other, liberal simulation
relations and also takes distributed runs into account. &oos software tools for the analysis
of Petri nets offer a synthesis module, for instance, theRetrify [13].

Put intuitively, the synthesis problem seeks to construisttibuted system from the obser-
vation of its sequential behavior. The fact that this is g@esnarks Petri nets as a “very natural
modeling technique” for distributed systems.



Composition of Nets Chapter 8

It is a general principle of software engineering to assembl
small systems into larger ones. This process is caltedpo-
sition. Here we will consider the case of nets wititerfaces

Two such nets can be joined together at their interfacesr-Int
faces used for asynchronous, directed communication are an
important special case. Sudpen netsare particularly natu-

ral: each Petri net can be broken down unambiguously into its
set of smallest open nets.

v O -0
8.1 Nets with Interfaces A OENEO

d e f
Two netle = (Pth; Fl) andN2 = (PQ, TQ, FQ) can alwayS a b ©
also be conceived of as a single nétEach place, each transi- O~ 0O
tion and each arc oV is a place, a transition or an arc of either O 1O
Ny or Ns: d e f

N:def <P1UP2,T1UT2,F1UF2). (1)

a b ©
Of interest are those elements that belong to béttand N, N O O
A placep € P, U P, consistently appears only once/ The erm™e
same is true for shared transitions and arcs. i b

The case of an element appearing\ipas a place and ifv,

as a transition or arc does not appear in any sensible mgdelin b
task. We will not consider such cases here. g)j@
A composition of the form (1) is not sufficiently flexible. An d
example of this is a neV for which there exist two instances
(copies) that should be composed in such a way that only a few
specified elements are merged (iidentified and the others d
are kept separate.
To express this, we distinguish betweaaterfaceelements
andinner elements of a netv. The difference becomes im-



90

Composition of Nets

interface

v OO

inter face: {a}

a b c

% OO

composed: b ¢
a O@g
b c

interface net
composition of interface nets

—_—— e e e e - -

portant during the composition df with a netN’ if N and
N’ share one or more elements: if an elemebelongs to the
interfaces of bothV and N’, then during the compositiom,
should be identified according to (1). Otherwise, contrary t
(1), the two examples of should be kept separate. Techni-
cally, this is achieved by means of a new elemetitat does
not belong to eithelN or N'. At first, the net\V is constructed
from N by

substitutinge for e (2)

in V. For the composition oV and N, the netsV and N are
now joined according to (1).
AnetN = (P, T, F) together with an interface

I CPUT

is aninterface net

Graphically, the interface of an interface net is often pthc
on or outside of a border arourd. Figure 8.1 shows three in-
terface nets modeling the behavior of a customer, a salesper
and his stock. Their inner elements model appropriate obntr
flows.

The composition of two interface nefg, = (P, 71, F)
andN, = (P, Ty, F3) with the interfaced; andl, is again an
interface net)V; & NV,. In accordance with (2), we assume here
that no inner element oWV, or N, appears in both nets. Then
(1) describes the net structure/®f & N,. The shared interface
elements ofV; and N, become inner elements 6f, © Ns; the
rest comprise the interfadeof N, & No:

I =45 (11 U L)\(L1 N Iy).

Figure 8.2 shows the composition of two of the interface nets
shown in Fig. 8.1.

During the composition of two nets, those two nets are in-
terchangeableq{ is commutative). If, in the case of multiple
interface nets, each shared element appears at most in{two in
terfaces, the order in which the nets are composed is akse int
changeabled is occasionally associative).



8.1. Nets with Interfaces

rcustomer

order check payment goods

sales- order check payment
person - — - = . request goods

—_—_— e — )= —m - - e e e e e e = = = -

request

Figure 8.1: Three interface nets

order check payment goods

Figure 8.2: Compositiosalesperson @ stock



92

Composition of Nets

associative set of interface nets

in out

OO

communicating interface nets

Communication
via p andq

Theorem 2 (Composition Theorem for Interface Netdjor
1 =1,2,3, let N; be interface nets with the interfacés

(@) N1 ® Ny = Ny @ Nj.
(b) If LNl,NI3 = @, then(Nl@Ng)@Ng = Nl@(NQEBN3)

Both propositions follow from the known laws of set oper-
ations.

A set M of interface nets is calleassociativef no element
appears in the interfaces of three or more of the netd/in
The term “associative” follows from Theorem 2(b). The three
interface nets in Fig. 8.1 form an associative set.

8.2 Communicating Nets

Shared places in the interfaces of two nets are often used for
asynchronous, directed communication. A plage the inter-
face of a netV is anin-place of N if no arc ends irp, that is,
if *p = (. Likewise,p is anout-place ofN if p* = (. OUTy
and INy respectively denote the sets of thiet- andin-places
of N.
Two interface net$vV; and N, communicate via an interface
placep if N; puts tokens intp and N, takes tokens from, or
vice versa: ifN, puts tokens intg and /V; takes tokens from
p, that is, if

pE (C)UTN1 N |NN2) U (OUTN2 N |NN1).

N; and N, communicatef for the interfacesl; and I, of
N; and N, eachx € I; N I, is a place via whichV; and N,
communicate. The three nets in Fig. 8.1 communicate parwis
with each other.

In practice, sets of pairwise communicating interface nets
are common: each interface place is shared by at most two
interface nets. For such sets, the following holds.

Theorem 3 (Associativity Theorem)Let M be a set of pair-
wise communicating interface nets. Thenis associative.



8.3. Unambiguous Decomposition into Open Nets 93

To prove this, one first shows by contradiction that each
shared element appears at most in two interfacgf netsnN;
in M: if x € I N I, N I3, thenz is anin-place or aroutplace
of at least two of the three nebg;, V,, N5. Those two nets do
not communicate! Thus the proposition follows from Theorem
2.

8.3 Unambiguous Decomposition into Open
Nets

Communicating nets often only have andout-places in their
interfaces, that is, no transitions and no places with tians
in both their pre-and post-sets. Such nets are often called
open The nets in Figures 8.1 and 8.2 are all open. Open nets
are a very natural construction: each arbitrary net can be de
composed into a unique set of smallest, pairwise communicat
ing open nets.

ForanetNV = (P, T, F) and subset$’ C P, T" C T and
F’" C F of places, transitions and arcs &f the net

N/ — (P/,leF,)

is asubnet ofV if N’ inherits all relevant arcs oV, that is, if
for each ardzx,y) € Fwithz,y € PPUT"

(z,y) € F". O/\D _
Now let IN be the set oin-places and OUT the set ofut- ‘

places of N’ such that inN for eachp € IN and eachy € l

OuUT: ‘
p* CT' and®q C T oo

Then N’ together with the interface HERE
I =45 INUOUT

is anopen subnet olV. If N’ itself does not have any proper  open subnet

open subnets, theN’ is aminimal open subnet dY. minimal open subnet
The two open netsalesperson and stock in Fig. 8.1 are

open subnets of the net in Fig. 8.2. Each minimal open subnet



Composition of Nets

N is a minimal open subnet.

of the examples in Figures 8.1 and 8.2 consists of a singie tra
sitiont together with its pre- and its post-Sett® as interface.

The minimal open subnets of form an associative set and
can thus be composed in arbitrary order. Above all, however,
their composition again results ¥ itself:

Theorem 4 (Theorem on Minimal Open Subnetd)et N be

a net and letVy, ..., N, be the minimal open subnets df.
Then:
(@) {Ny,..., N} is associative.

() N=N @...® N,

Property (a) follows from the Associativity Theorem and the
observation that th&; are communicating pairwise. The proof
of (b) utilizes an equivalence relatienon the transitions aiV:

let ~ be the strongest equivalence such thatu if t*Nu® = ()

or *t N *u = (). Each equivalence clags of ~ together with
the places irtt U t* of all transitionst € K form a netNg.
Together with then- andoutplaces of Ny as interface, the
net N is a minimal open subnet o .



8.3. Unambiguous Decomposition into Open Nets 95

Exercises

1. Model the cookie vending machine shown in Fig. 3.1 as vgetiree of its customers as open
nets.
Hint: The three transitionmsert coin, take packet andreturn coin in Fig.3.1 describe (in
parts) the behavior of the customer. Thus, the interfacedmt the vending machine and
the customer consists of transitions there. The behavidhetustomer is not explicitly
modeled. Construct the interface between the vending maerid the customer as places
for the coin slot, the cookie compartment and a slot for regdrcoins.

2. Based on Fig. 8.1, construct the nets

(a) customer & salesperson,
(b) customer & stock,

(c) customer & salesperson & stock.

3. Prove Theorem 2.

Further Reading

In this chapter, we have defined the composition of two nedsshiared elements. Alterna-
tively, it is possible to assign labels to elements and tondefomposition via equally labeled
elements. Most composition operations given in the liteefre ultimately based on one of
these two principles. This includes the mathematicallylehging pushout construction found
in category theory. Open nets are typically used to modelic=oriented architectures [2].

Interfaces with transitions are covered in [9]. An overviewdifferent composition operations
is given in [34]. Associativity is important for the comptisn of many variants of nets [68].






Part Il

Analysis Methods






99

Part | showed how to model a system as a Petri net. Partll is
now concerned with thanalysisof such models, that is, deter-
mining important properties. Such an important propertgrof
makes a statement about each and every reachable marking
of a system net. For instance, in each reachable markiraj
the cookie vending machine in Fig. 2.1, the following holds:

M marks eitheA or D

and
M consists of at most 9 tokens

Such a system property isstate propertyof the system
net. There are a series of specific analysis techniquesdt® st
properties. This topic is discussed in Chapters 9-13.

There are some very common properties that are often asked
about in a system ne¥V: does/N terminate? CanV reach
a marking that no longer enables any transitions? Can each
transition always become enabled again? From each reach-
able marking, is it possible to reach the initial markingia@a
Such questions generally cannot be answered, or at least not
very efficiently. Some of them can be characterized in terms
of graph theory by means of a marking graph (Sect. 2.8) or ap-
proximated by means of a derived graph, the covering graph.
Chap. 14 discusses these graphs.

Two questions are particularly important for a system/Met
and a marking\/:

e Is M reachable from the initial marking?

e Is M definitely reached from the initial marking?

These two questions are covered in Chaps. 15 and 16. Chap-
ters 17, 18 and 19 introduce special net classes and describe
how their structures can be utilized in their analysis.






State Properties Chapter 9

Important properties of a system pertain to the systemhrea
able states. In a system n&t those are the reachable mark-
ings. We represent suchssate propertyr’ of N with an ex-
pression: that contains as variables the places\of If, for a
marking M, each place in « is then replaced wittd/ (p), the
expression can be evaluated to eittrae (* £ holds inA7”) or
false(* £ does not hold in\/™).

State properties are often expressed as linear equations or
inequalities. This chapter covers tfem and the validity of
such equations and inequalities. Howpmve their validity
is covered in the following chapters. As an example, we start
out with properties of the cookie vending machine. The form
of linear equations and inequalities is very simple and is ex
plained in the second section. This is followed by further ex
amples, and finally by ideas about variants of linear eqoatio
and inequalities.

9.1 Equations and Inequalities of the Cookie
Vending Machine
For the model of the cookie vending machiNen Fig. 2.1 and
its respective initial markingd/, the following holds:
Mo(A) + Mo(D) + Mo(E) =[] + [o] + [7] =[o,7]. (1)
In particular, theguantityof tokens can be derived from this:
[Mo(A)| + [Mo(D)| + [Mo(E)| = [0, 7]| =2.  (2)

Thus, the places, D andE initially hold a total of two tokens.
After the stepM, L> My

My(A) + My (D) + My (E) = [@] + [+ [7] = [®,7].  (3)



State Properties

The places now hold different tokens, but the quantity of to-
kens remains the same:

|My(A)] + [My(D)| + [My ()| = [[@, 7]| = 2. (4)

Now Egs. (2) and (4) can be combined. For each of the two
markingsM = M, andM = M, the following holds:

[M(A)| + |M(D)[ + [M(E)| = 2. (5)

In fact, Eq. (5) holds not only for the markindg = M, and
M = M, but foreach reachable markingy of V. The places
A, D andE thus always hold two tokens. Equation (®lds in
N, and we write as shorthand:

/Al + D[ + [E] = 2. (6)

Upon closer inspection, it becomes evident theand D to-
getheralwayshold one token an& another. Thus, for each
reachable marking/:

|M(A)| 4+ |M(D)| =1and|M(E)| = 1.

As shorthand, we write:

|A| + |D| = 1, and|E| = 1. (7)

The relation betweeA andD can be described even more
precisely: in each reachable marking, eitherA holds a euro
or D holds a black dot. To express this observation as an equa-
tion, we count the tokens iD; that is, we calculatéM (D)],
and then generate the respective amount of euro coins:

|M(D)| - [@]. (8)

Becausel/ (D) = [e] or M (D) = [], it follows that|M (D)| =

1 or |[M(D)| = 0. The expression (8) thus either evaluates to
[@] or[]. If M(A) (thatis,| ] or [@], respectively) is added to
this, the result is@|. Thus, for each reachable marking:

M(A) + (IM(D)| - [@]) = [@]

or simply
A+ (D] - [®@]) = [@].



9.1. Equations and Inequalities of the Cookie Vending Maehin 103

Intuitively speaking, the token ib corresponds to a euro \

The relation betweeR andH is particularly interesting. In
any reachable marking/, each euro irF should correspond
to two packets iH, thus2 - | M (F)| + | M (H)| = 7. However,
this does not hold if a signal is pending®n In this case, the
signal neutralizes one euro i So actually2 - [M(F)| — 2 -
|M(B)| + |M(H)| =7, or simply

2IF| —2/B| +|H[ =7 (9)

holds inN.! Furthermore, the equation
2|B| +2|G| =2
obviously holds inV and can be added to Eq. (9), which yields:
2|F| + 2|G| + [H| = 9.

This equation can be interpreted as a “stream” of tokens; flow
ing fromHviaGtoF.

Cardinality and multiplicity are apparently important foet
formulation of valid linear equations. However, other func
tions are often needed as well. An example is the relation be-
tween the numeral value of the token inE and the amount
a of coins inF: the sumw + 2a is always 7. To express this
relation as an equation, lebntbe a function that, for each sin-  in the initial marking/, in
gleton multisetn| with n € N, returns the value. It is thus Fig. 2.1:
defined as cont(My(E)) = cont([7]) =7
cont([n]) =def n.- 2. [My(F)| =2-|[]| =2-0=0

Then:

cont(E) + 2|F| = 7. (10) 2| My(F)| + | My(H)| =

In addition to equations, there are also some interesting 2. ([]| + |[0.0,D,0,0, &, &) =

equalitiesholding in NV, for instance 2.047=7<9
2|F| + [H| < 9 and (11)  cont(My(E)) = cont([7)) =7 < 7=
CO?’Lt(E) S |H| (12) H@a@v@v@a@v@v 9” = |M0(H)|

cont(E) + 2|F| =7

1As is customary, the product is henceforth written withdet dot.



104

State Properties

equation

9.2 Valid Equations

The most general form of a linear equation of a systemM\et
IS

filpr) + o+ fi(pr) = a, (13)
wherep,, ..., p; are the places aN. They are thevariables
of the equationf, ..., f, are functions of the form

fit: M — A (14)

where M is the set of all multisets that can occur as markings
of places ofN. The setA is an arbitrary set, whose elements
can be added. In particular,js an element ol in Eq. (13).

A function f; is often the identity function. In this case, the
tokens inp; are themselves used in the equati@ris also often
the cardinality function, in which case the number of tokiens
p; IS used in the equationd is often the sefM of multisets,
as in Egs. (1) and (3), or the set of natural numbers or insgger
as in Egs. (6), (7) and (10). Other variations will be introeld
later.

An equation of the form (135 valid in a marking M of N
if

fitM(p1)) + ...+ fi(M(pr)) = a. (15)

An equationis valid in Nif it holds in each reachable mark-
ing of N. If a subtraction is defined on the sét then “—”
may also occur in place of” in Eg. (13), and equations may
be transposed in the usual way. In the model of the cookie
vending machine in Fig. 2.1, for instance

H| — 2/B| + 2|F| = 7, and

|H| = cont(E) + 2|B].

9.3 Example: Dining Philosophers

The system of five thinking and dining philosophers was for-
mulated by E.W. Dijkstra in the mid-1960s as an illustratdn
a synchronization problem [19]. Five philosophers sit acbu



9.3. Example: Dining Philosophers 105

a table. Initially, between each two neighboring philosensh
lies a single chopstick. As an example showing the role of
functions (and the multiple occurrence of a variable) indsal
equations, Fig. 9.1 shows this system in its initial stalifive
philosophers, . .., p; arethinking, no philosopher iglining

and all five chopstickg, ..., g5 areavailable. Obviously, a
philosopher needs two chopsticks to start dining (tramsii.
Soin order to do this, a philosophgmicks up the chopsticl;

to his left and the chopstick_; to his right (withgy =4 gs).

Two neighboring philosophers can thus never dine at the same
time. When the philosopher has finished dining, he puts his
chopsticks back (transition) and again devotes himself to
thinking.

thinking

Fori=1,..,5:

1(Pi) =gef 9i .
7(Pi) =def 9i-1» With 9o =qer J5

dining
Figure 9.1: The five philosophers

The equation
thinking + dining = [p1, ..., ps]

is obvious: each philosopher is either thinking or dinindgpeT

equation I([P1: P3))

. - - = [l(p1),1(p3)]
available + [(dining) + r(dining) = [g1, ..., g5] (16) = [0, 95]

is more interesting: each dining philosopher corresponds t
his two chopsticks. The functiorisandr are only defined for
single philosophers in Fig. 9.1. In Eq. (16), however, wel\app
them tosetsof philosophers. We can generalize a functjon
from single elements to multisets as follows:

fllay, - an]) =der [f(ar), ..., flan)].



106

State Properties

inequality

valid inequality

canonical inequality

A little less transparent is the intuitive meaning of theidal
equation

[(thinking) + r(thinking) - available = [g1,...,95].  (17)

9.4 Valid Inequalities

Using functionsf; : M — A asin Eq. (14), it is also possible
to construcinequalitiesanalogously to equations as shown in
(13):

fipr) + o+ fr(pr) < a

This only works, however, if an ordet is defined on the set

A. Common examples of this are multisets (see Section 2.3)
and the sets of natural numbers or integers. The relatdn “
may also be replaced with<”, “ >" or “ >" (in principle, pred-
icates that are even more general are possible). Equatfidips (
and (12) show examples of inequalities. Tadidity of such

an inequality in a marking/ of a system netV is defined
analogously to Section 9.2.

From the definition of markings, it follows that for each sys-
tem netV and each placgof N: M(p) > | | for each marking
M. Thus thecanonical inequality

p>1]

holds for each place of N. From this, it also immediately
follows that|p| > 0.

9.5 Equations and Inequalities of Ele-
mentary System Nets

For an elementary system n&t, equations according to (13)
often take the special form

ny-pr+ -+ ng P = No,

whereny, . . ., ny are integers. Although a plagalways holds
a natural numbe#/ (p) of tokens, the formalism has to operate



9.5. Equations and Inequalities of Elementary System Nets 107

Figure 9.2: Abstract variant of the cookie vending machine

on integers to support subtraction. The facteyoften take
the valuel and are not written. In the abstract variant of the
cookie vending machine in Fig. 9.2, for instance, the foliayv
equations hold:

A+D =1, B+G=1, E+F=5,
H+G+F=6, E+B—-H=0.

In addition, the following inequalities hold:

H+C<5 and E+B4+C<5.

In systems with communicating processes, the control flow
of each individual procesB can be represented as an equation
of the form

pr+...+p, =1, (18)

meaning that the control flow oP runs through the places
p1,---,Pn. An example of this is the system of mutual exclu-
sion: the control flows of the processeandr correspond to
the equations

A+B+C=1 and E+F+G=1. (19)

The property of mutual exclusion is described by the inagual

C+G<1. (20)

2For better readability, the cardinality bars are henchfornitted in
equations of elementary system nets.



State Properties

The control flows of the two processes of the crosstalk algo-
rithm are likewise described by the equations

A+B+C=1 and D+E+F=1.
An example of a facton; > 1 is the equation
2A+B+C+D+E=2

in the elementary system net in Fig. 9.3.

A valid equation of the form (18) corresponds to a special
subgraph of the respective Petri net. This subgraph censist
of the place9, ..., p, used in the equation, and all adjacent
transitions. In the mutual exclusion system with its valigia-
tions (19), for instance, the placasB andC, together with all
adjacent transitions, form a circle (likewige, F andG). The
valid equation

C+D+G=1

with the branching place forms a subgraph consisting of two
circles. In general, the subgraph contains with each plaak
its adjacent transitions and with each transitioexactly one
place in*t and one place ir’.

Figure 9.3: Technical example withA + B+ C+ D+ E =2

9.6 Modulo Equations

The value ranged of the functionsf; in Eq. (14) sometimes
consists of the two valugsand1 with themodulo-2 addition



9.7. Propositional State Properties 109

that is,
1+1=0.

Figure 9.4 shows an elementary systemMNah which the
modulo-2 equation

A+B+E+F=0

holds, wheret is the modulo-2 addition. From this equation it
follows, for instance, that no markiny with M (A) = 1 and
M(B) = M(E) = M(F) = 0 is reachable inV.

Figure 9.4: Elementary system net with the valid modulo-GagignA +
B+E+F=0

As another example, in Section 13.10 we will use a modulo-
2 equation to prove central properties of the kindergartenay
from Section 4.6.

9.7 Propositional State Properties

It is often convenient to formulate state properties asclalgi
expressions, as, for instance, for the cookie vending machi
“If a signal is pending, then thstorage contains at least either
a rectangular or a round packet.” or “If tiseorage still con-
tains all the packets of the initial marking, theignal andcash

box hold equally many tokens (that is, at most one).” For the
mutual exclusion system: “The left process is not critical o
the key is not available.” Or for the crosstalk algorithm¢Se
tion 3.4): “If the left process isvaiting, then eithersent; or
confirmed,. or finished,. contains a token.”



110

State Properties

state property

To formulate such expressions, it is necessary to combine

valid equations and inequalities (i.e., state propertes)og-
ical operations. For two equations or inequalitieand 5, we
define the logical negationa of « and the logical “andiv A 3
of o and$ in a markingM of a system neiV as follows:

=« holds inM iff o does not hold inV/,

a A g holds inM iff « and/3 both hold in)/.

With this, we can formulat@ropositional state properties
In the initial marking)M, of Fig. 9.4, for instance(A = 1) A
(B = 1) as well as—(C = 1) hold. Other logical operations
like oV B8 (“aor ")y anda — S (“if «, thens”) can then, as
usual, be derived as(—a A =) and—a V (3, respectively.

A propositional expression holds in a system néeY if «
holds in each reachable marking 8t The following expres-
sions, for instance, hold

¢ in the cookie vending machine in Fig. 2.1:

B>1— (H>[0] VH> [J)) and (21)
H=[00000 & & = (1Bl = [FI A Bl < 1),
(22)

e in the mutual exclusion system in Fig. 4.4:

C=0 Vv D=0, (23)

e in the crosstalk algorithm in Fig. 3.8:

B=1->(G=1VH=1VvL=1). (24)

These examples support the observation that propositional

state properties are often composed of very simple equsation
and inequalities. The followindot notationis therefore very
convenient: for a system neéY with a placep, an element
u € U and a multised € M of the universé/

p.u denote® > [u| and



9.7. Propositional State Properties 111

p.A denotep > A.

If a placep holds only black tokens, then
p denotep > [e].

ForasetP = {py,...,p,} of places, we simply write

Porp;...p,instead ofP = p; A ... A p,. (25)
The above examples (21) through (24) then become
B— (HOVH.D),

H.[D,D,0,0,0,5,&) — (|B| = |[F| A |B] < 1),
—~CV -D,
B— (GVHVL).

In the mutual exclusion system in Fig. 4.3

AE — D andCE — —D.

We occasionally use the notation
MEaoNEa

to express that a propertyholds in a marking\/ or in a sys-
tem netN, respectively.

Theorem 5 (Validity Theorem for Propositional Properties)
For a system nelv and propositional properties and 3, the
following hold:

@ NEaAnpiff N =aandN = B.

(b) If not N = «, then not necessarilyy = — a.
() If N Eaor N | 3, thenN = a Vv g.

(d) If N = «, thenN E 3 — a.

(e) If N = —a, thenN = a — .



112 State Properties

Exercises

1. Which of the following equations and inequalities holdhe system net in Fig. 5.77?

(@) A+B+C+D+E=2

(b) 2A+B+C+D+E+F+G=3
(c)F+G=1

(d) B+C=D+E

(e) C+E+G<1

(f) B+D+F<1

2. Construct a valid equation for each of the following systests. The factor in front of each
place must not equal 0.

(a) Fig. 4.1
(b) Fig. 4.20
(c) Fig. 9.5

a Figure 9.5: System net

3. Show that the following equations hold in the system né&lign 2.1.

(@) |H| = cont(E) + 2|B|
(b) [H| + 2|G| = cont(E) + 2

4. What property follows from the modulo-2 equatiant B + E + F = 0 for the number of
tokens in the system net in Fig. 9.4?

5. Prove the five propositions of Theorem 5.

6. Show that the converse of each proposition (c)—(e) of idracd does not hold.



9.7. Propositional State Properties 113

7. Which of the following statements hold in the system iebf the five philosophers in
Fig. 9.1?
(@) N [ thinking.p, — —dining.p,
(b) N = dining.p; — —available.l(p;) A —available.r(p;)
(c) N [= thinking.p, — available.l(p;) A available.r(p,)
(d) N = available.g, ; — thinking.p,
(e) N [ available.g, — thinking.p,
() N k= available.g; — —thinking.p;

* 8. The following refers to this chapter’s postcripttie Polite Philosophers” (next page):

(a) Construct an “impolite” distributed run of the system imeffig. 9.1.
(b) Construct three more behavioral patterns of polite gojhers.

(c) Generalize the case of = 5 philosophers to an arbitrary number of philosophers.
How many distributed runs exist? How many runs have disstreictures?

(d) Expand the system net in Fig. 9.4 such that only the pnlits are generated.

Further Reading

Each modeling language formulates system properties owitsway: as a combination of and
a compromise between what is needed in practice and whatecproteen algorithmically. For
Petri nets we use expressions with places as variables ahdhem, formulate equations and
inequalities. In the literature, such equations and inkiiggm are usually presented together
with the corresponding techniques for proving their vajidkKurt Lautenbach [43] was the first
to propose equations as a means to formulate propertiegmikeatary system nets, and place
invariants (Chapter 11) as a means to prove their correctness

In addition to the linear and modulo equations presenteckti@s 9.5 and 9.6, one could
also discuss nonlinear equations. As an alternative taugléy (20), for instance, the mutual
exclusion property could also be described via

C-G=0.



114 State Properties




9.7. Propositional State Properties 115

The Polite Philosophers

We return to the example of the five philosophers in Secti@ But only considepolite
philosophers now: Two neighboring philosophersgokte to each other if they use their shared
chopstickalternatingly We then show that the system’s distributed runs take cledrvary
regular structures if all neighbors are polite to each other

A patrtial distributed run in which the philosophgy picks up his chopsticks, eats and then
returns his chopsticks takes the form

available.g, available.qg,

available.g, available.g,

(26)

(the transitiong andu occur in the mode: = 2). Each “polite” distributed run of the system
net in Fig. 9.1 is composed of such “meals” of the philosopher

For convenience, partial runs of the form (26) can be singalifnto

~
P

Then

glue, gue, - -
T T T T T
7 \p3/2\p3/ \p3/ T T T
\p4/ \p/ \p/ \p/ ~ 7

T T~ T T~ T

(27)



116 State Properties

shows a typical distributed run of the system of polite pgolshers. Occurrences pf lying
directly on top of each other at the top or bottom edge areticiErhere.

Different initial markings eventually assume the behaadipattern (27). It can be intuitively
characterized by “While; is dining, p;.» passes his right chopstick {6,3.” In a different
patternp, 3 passes his left chopstick {9, .. There exist two more patterns in which the polite
philosophers dine “around” the table. Further details ascdbed in [66].



Traps and Cotraps of
Elementary System Nets

Traps form the basis of a particularly simple technique for

proving inequalities. They take advantage of the structdire
Petri nets, in particular, the simple rule for the occureent
transitions and the alternating pattern of places anditrans.
We will consider traps of elementary system nets first.

10.1 Traps of Elementary System Nets

Technically, atrap of an elementary system nat is a subset
@ of the places ofV such that for each transitianof N the
following holds:

If there exists a place € @ such thap € °t,
then there also exists a plages () such thay < t°.

(1)

Intuitively speaking: “A transition that takes somethingf of
(@ also puts something back in.”

A trap @ of an elementary system natis calledmarked in
a markingM if there exists at least one plage= () such that
M(q) > 1. f Q = {q1,...,¢} is a trap marked in/, then
obviously

M(q)+...+M(q,) > 1. 2

For each ste/ —— M’ of N there exist only two possi-
bilities now: either there exists a plagec () such thap € °t,
in which case, according to (1), there also exists a pjac&)
such thay € t*. ThenM’(q) > 1 and thus

M(q)+...+M(g) > 1. (3)

Or there exists no such plage Then for each place € @ :

Chapter 10

trap
if
p t
O \ then
q
trap: {p,q, ...}
A a B b C
OSNENORNNEN®

marked trap{A,B,C}
unmarked traps{B,C} , {C}

trap: {A,C,D,E}

M'(q) > M(q), in which case (3) also holds. Hence, a marked Mtially marked trap



118

Traps and Cotraps of Elementary System Nets

C+D > 1, but{CD}isnota
trap

cotrap
A a B b C
©—0-O0—-0-0

cotraps:{A,B,C}, {AB}, {A}

cotrap

O \then

q

cotrap:{p,q, ...}

trap will remain marked. Of particular interest argtially
markedtraps, that is, traps marked in the initial markimf:

Theorem 6 (Trap Theorem)Let N be an elementary system
net with an initially marked trag) = {¢,...,¢.}. Then the
following inequality holds inV:

G+ 4> (4)

The converse is not generally true: a valid inequality of the
form (1) does not imply that the séf, ..., ¢, } is a trap.

10.2 Cotraps

As a counterpart to a trap catrapof an elementary system net
N is a subsef) of the places ofV such that for each transition
t of N the following holds:

If there exists a placg € Q) such thap € ¢°,
then there also exists a plages () such thay € °t.

(5)

Intuitively speaking: “A transition that puts somethingar®
also takes something out.”

Now let@ = {q, ..., ¢,} be a cotrap that is unmarked in a
marking M, that is
M(q)+ ...+ M(g,) = 0. (6)

Furthermore, let\/ - M’ be a step. Then for each place
p € °t: M(p) > 1. This means, because of Eq. (6), that there
cannot exist a place € @ such thaty € *t. Hence, because
of (5), there also cannot exist a plages (Q such thap € t°.
Then it follows from Eg. (6) that

M'(q1) + ...+ M (gy) = 0.

Hence, an unmarked cotrap will remain unmarked. If, dur-
ing a runw, a cotrap loses its last token, then no transition
in Q* can occur for the remainder af. In particular, a cotrap
may already be unmarked in the initial marking:



10.3. The Trap/Cotrap Property 119

Theorem 7(Cotrap Theorem)Let NV be an elementary system
net with an initially unmarked cotra@) = {q¢i,...,¢.}. Then
the following equation holds iV:

G +...+¢q-=0. (7)

In particular, an unmarked cotrap occurs during a total sys-
tem deadlock, that is, when a markidg does not enable a
single transition. Of interest is the sitof the places that are
unmarked inV/: for each transitiom there exists a plagec °t
such thap € R. Thus,R is an unmarked cotrap. The contra-
position of this argument results in the following theorem.

Theorem 8 (Theorem on Marked Cotrapsl.et N be an ele-
mentary system net and 1&f be a marking ofV that marks
each cotrap ofV. Then)M enables at least one transition.

10.3 The Trap/Cotrap Property

Sometimes the structure of a net guarantees that each acha

marking marks each cotrap, for instance if each cotrap amta

an initially marked trap as a subset. We define a systenVnet

to have therap/cotrap propertyf: trap/cotrap property

Each cotrap? of N contains as a
subset an initially marked trap

A a B b c
This definition leads us to: O 1—O—11—0

Theorem 9 (Trap/Cotrap Theorem)Let N be an elementary A} is an initially marked trap
system net that has the trap/cotrap property. Then eacthreac 2and a subset of each cotrap
able marking)M of N enables at least one transition.

(8)

Figure 9.3 shows a technical example in whighB,C,D}
is a cotrap that does not contain a trap. Thus, Theorem 9 does
not apply. In fact, all tokens can accumulateBnin which
case no more steps are possible.



120 Traps and Cotraps of Elementary System Nets

Exercises

1. Construct either a proof or a counterexample for each dioll@ving propositions:

(&) The union of two traps is a trap.

(b) The intersection of two traps is a trap.

(c) The union of two cotraps is a cotrap.

(d) The intersection of two cotraps is a cotrap.

2. Show that in the system net in Fig. 10.1 each cotrap is alsgpa How does this change if
the loop between andC is deleted?

a B

Figure 10.1: System net

3. (a) Show that the system net in Fig. 10.2 has the trapfcpt@perty.
(b) Which property follows from the observation in (a)?

B D

Figure 10.2: System net

* 4. Let N be an elementary system net anddet {q, ..., ¢, } be a set of the places of such
that
aq+...+q,=1.

Prove or disprove the following propositions.

() Qisatrap.



10.3. The Trap/Cotrap Property 121

(b) Q is atrap if each transition oV is enabled at least once.
(c) Replace the above equation with the inequality

G +...+q, > 1.
Prove or disprove propositions (a) and (b) for this case.

5. Is the sefP of all places of a system net a trap?Asa cotrap?

Further Reading

Traps and cotraps have been known since the 1970s [33]. The fteap” (German, “Falle”;
French, “siphon”) directly describes the intuitive meanof this construction. Cotraps origi-
nally came to be known as “deadlocks” or sometimes “sipham#fie literature — a confusing
terminology. In modeling practice, traps occur much moterothan cotraps.

In [44] Lautenbach describes linear-algebraic charadgadns of and corresponding algo-
rithms for traps and cotraps (called “deadlocks” there).p@rticular interest for practical ap-
plications are minimal (smallest) traps. How to calcul&ien efficiently is covered in [80].

To increase efficiency, Wegrzyn and her coauthors [79fetsiatisfiability algorithms found
in propositional logic. The paper also describes a rang¢hafr@rocedures for calculating traps
and cotraps.






Place Invariants of Chapter 11
Elementary System Nets

Place invariantsare the most important analysis technique for
system nets. They take advantage ofdbestant effeadf tran-
sitions: each time a transitigroccurs in the modg, the same
multisets are moved. The effect(@f 5) islinear. For instance,

if the places irf¢ hold twice as many tokens, thémay occur
twice as many times. The mathematics for linear behaviors is
the well-known linear algebra with vectors, matrices anst sy
tems of equations. In fact, many aspects of Petri nets can be
represented and calculated with these structures. Wensthrt
linear-algebraic notation for elementary system nets.

11.1 Vector Representation for Elemen-
tary System Nets

Chapter 3 defines a marking of an elementary system nat

as a mapping/ : P — N that maps each plageof N to a

natural number. It is very easy to impose an order on the place

of a system net, for instance, by means of indices of the form A
p1,...,pr OF by alphabetical order. Thel can be written as

the column vector
a 1
_ . My=| 1
M - . 0

ak

wherea; is the number of tokens in thiéh place. vector representation of markings
Likewise, each transitiohcan be written as a vector

(1))

2k

I~
I



124 Place Invariants of Elementary System Nets

vector representation of transitionswhere fori = 1,... &k
—1, if p; € *tandp; ¢ t°,
Zi =def —|—1, if i € t® andpi ¢ .t,
0, otherwise
It is generally not possible to reconstruct from the vector

the input and output placés andt®, respectivelyz; = 0 if no
arc connectg; andt, but also if there exists a loop betwegn

My =My +t: andt.
0 1 . With the above vectors atnd the classic definition of the sum
1 =11+ 0 of vectors, for each step/ — M’ of N:
IRHEE) |
M =M +t. 1)
My =My +U: This is called thevector representationf steps.

(2)-(1)-() -
0 0 0 11.2 The Matrix N

It is equally easy to impose an order of the fotm. .., ¢, on
matrix representation of a net the transitions ofV. Then the column vectors together form

thematrix NV of V:
-1 1 211 ... 21
1 0
1k 2k
N|... 7 .. Figure 11.1 shows a technical example of an elementary sys-
tem net/V and its respective matri¥.
i -1 With this construction, for each ste@g Yy M’ and each
: placep; of N:
1’ 1 .
M'(pi) = M(p;) + N(3,9).
b
WO O 11.3 Place Invariants

Section 9.5 has shown that a valid equation of an elementary
system netV often takes the form

ny-pr+...+ Nk P ="ng (2)



11.3. Place Invariants 125

N a b c d

Al —1 —1 1
B 1 -1

C 1 1 -1
D 1 1 -1
E 1 -1

Figure 11.1: An elementary system n®twith its respective matrixV
(entries of 0 are omitted)

with integersny, . .., n; and place9y, ..., px. The number 0
is a possible factor, therefore we can always assalindaces
in their orderpy, ..., py In (2).
Valid equations of the form (2) can be derived from solu-
tions of the system of equations

z-N= 6, (3) place invariant

where0 = (0, ...,0) is anl-dimensional row vector. A vector
n = (ny,...,n;) solves (3) if and only if» - £ = 0 for each
transitiont of V. A solutionn of (3) is called gplace invariant
of N. With the initial marking)M, of N, the number

no =get 1+ M, equation of a place invariant
(i.e. n1 - Mo(p1) + ... + ng - Mo(px)) is the constant ofn.

Equation (2) then is thequation of n The following theorem

motivates this definition:

Theorem 10 (Elementary Place Invariants Theorenbet NV
be an elementary system net with a place invariarithen the
equation ofn holds in.V.

0w >|=
— = =3

The equation derived from a place invariant is often called
an invariant itself.

To prove this theorem, we have to show that M = n, n-My=2
for each reachable markinty/. The equation trivially holds A+B+C=2
for M = M,. Furthermore, each reachable markivigcan be




126

Place Invariants of Elementary System Nets

reached from\/, with a finite number of steps. Therefore, it

suffices to show that - M = n - M’ for each step\/ Ly
This is now quite simple:

n-M

- (M + t) (according to (1))

- M +n -t (linear algebra)

- M + 0 (because: is a place invariant)
- M (linear algebra).

1
IS I3 I8

I
[

Figure 11.2 shows the initial markiny/, of the system net
N in Fig. 11.1 as a vector, as well as four place invariants of
N together with their respective valid equations that hawenbe
derived from thent.

My | i i3 iy
A 1 1 2 fromi;:A+C+E=1
B 1 1 fromi, A+B+D+E=1
C 1 1 -1 fromis: 2A+B+ C + D +2E =2
D 1 1 1 fromis:B—C+ D=0
E 1 1 2
Figure 11.2: Initial markingM,, place invariantsy, ..., i, and their re-

spective equations fa¥ in Fig. 11.1

The converse of Theorem 10 holds under the mild assump-
tion that each transition is enabled by at least one reaehabl
marking:

Theorem 11(Converted Place Invariants Theorerhgt N be
an elementary system net such that for each transttithrere
exists a reachable markinty that enables. Furthermore, let
Eg. (2) hold inN. Thenn = (n4,...,ny) is a place invariant
of N with the constant,,.

For a proof, consider a reachable sMp% M'. Asinthe
proof of Theorem 10 above, it follows that- ¢ = 0. Such a
step exists for each transition

To improve readability, the place invariants are writterwalsimn vec-
tors although, in fact, they are row vectors.



11.4. Positive Place Invariants 127

The same argument can be used to prove the validity of
modulo-2 equations. For the net in Fig. 9.4, for instance,
(1,1,0,0,1,1,0,0) is a place invariant (with the places or-
dered alphabetically, . . ., H). This invariant has the constant
4, which is congruent to 0 (modulo 2). The equation B +
E + F = 0, already discussed in Section 9.6, can be derived
from this.

Place invariants offer a powerful technique for provinggro
erties of elementary system nets. For instance, all equatio
mentioned in Section 9.5 can be directly derived from place
invariants.

11.4 Positive Place Invariants

The term “invariant” particularly applies to place invaria
with nonnegative entries.

A place invariant of an elementary system natis called
positive for a place of \V if positive place invariant

i(p) > 0and
i(q) > 0 for each place of N.

From this it follows that:

Theorem 12 (Positive Place Invariants Theoren# placep
with a positive place invariant is bounded.

p thus has a number such thatM (p) < n for all reachable
markingsM of N. The converse is not generally true.

Particularly simple and also quite common are positiveglac
invariants with equations of the form

pr+ ... +pp =1

An example is the equatioh+ C + E = 1 for Fig. 11.1. These
places are connected via arcs and transitions (in thisaase

d ande) and thus form “paths through the net that a token can
traverse.” Such a path contains

e each involved place withll its incoming andall its outgo-
ing arcs,



128

Place Invariants of Elementary System Nets

e each involved transition witexactly onencoming andex-
actly oneoutgoing arc.

Figure 11.3 indicates such a path with boldfaced places; tra
sitions and arcs.

Figure 11.3: Paths of the place in-
variant of the equatiol\ + C + E
=1

The carrier of a positive place invariantis the set of all
placesp with i(p) > 0. Then:

Theorem 13 (Invariant Trap/Invariant Cotrap Theorenilhe
carrier of a positive place invariant of a system métis also
atrap and a cotrap ofV.

Itis also possible in Eg. (2) to replace the integeys . . , ny
with rational numbers. Solving these equations would then b
even simpler. However, rational numbers would inhibit an in
tuitive understanding here.



11.4. Positive Place Invariants 129

Exercises
1. Exercises relating to Fig. 11.1:
(a) Construct two place invariants that are linearly indejeer. Derive their respective
equations.
(b) Construct a place invariant whose carrier contains atigs, and derive its respective

equation.

2. Which of the following equations and propositional foramilhold in the system net in
Fig. 11.4? Either prove them with the help of place invasamt construct a counterex-
ample.

@A+2B+C+D+E=2
(b) A+B+C=1

() E—>AVCVD
(d)A>E

Figure 11.4: System net

3. Construct a counterexample for the converse of each oibiéieorems in Section 11.4.

4. Derive all the equations and inequalities shown in Sacéi® from place invariants and
traps of their respective system nets.

5. Let NV be an elementary system net in which each place has a pqdaice invariant. Show
that there exists a single place invariant that is positiveafl places of\V.



130 Place Invariants of Elementary System Nets

Further Reading

Place invariants of elementary system nets as well as thexneéta net and the vector repre-
sentation of markings and steps were introduced by Lautdming43].

With modulo+ invariants, Desel et al. [17] broke new ground. The matrpresentation
and the concept of place invariants seamlessly carry ov¥alids self-modifying Petri nets
[75]: for a netNV with an arc(¢, p), whose weight is equal to the current number of tokens in the
placeq, the matrix entryN (¢, p) =q4.s ¢ - p iS generated. Equations for the calculation of place
invariants are thus no longer linear.

The calculationof place invariants is complex, because only integer smhstio the system
of Egs. (3) are valid; [22] explains the details. In [80], Yamechi and his coauthors exploit
Theorem 13 to derive an efficient heuristic that discardglicktes that are neither traps nor
cotraps.



Combining Traps and Place
Invariants of Elementary
System Nets

When two valid equations or inequalities are added or sub-
tracted, the result is again a valid equation or inequaltge

will show that such calculations substantially increasedh-
pressive power of traps and place invariants. We will stat w
equations and inequalities of elementary system nets.

12.1 Calculating with Equations and In-
equalities

According to Eq. (2) in Section 11.3, an equation of an ele-
mentary system net takes the form

Gi: ni-pir+...4+ng pr=ng.
Theadditionof an equation
Go: my-pr+...+mg-pp=my
to (G; yields the equation
Gi+Gy: (ny+my)-pr+...+ (ng+mg) - pr = no + mo.
Thescalar productof G; and a factor: yields
z-Gr: o znm-pr+...+ 20, pr=2-ng,
wherez may very well be a negative number. Likewise, calcu-
lations with inequalities are done according to the usualstu
These operations retain the validity of equations and iakqu

ities, and we can exploit this fact for a very powerful prayin
technique:

Chapter 12

sum of equations

scalar product of an equation and a number



132 Combining Traps and Place Invariants of Elementary Systera Net

A a B b C

O — O Figure 12.1: Technical ex-
D c E ample:A+E <1

Theorem 14 (Addition Theorem of Valid Equations and In-
equalities) Let N be an elementary system net. The sum of two
equations or inequalities that hold iN, as well as the product

of such an equation or inequality with a factgragain hold in

N.

As a proof, consider a markingy/ that is reachable inV.
Thus,G; andG, hold in M. Becauser,;- M (p;)+m;- M (p;) =
(n;+m;)-M(p;) for (i = 1,..., k), the sumG&; +G- also holds
in M. Forz the argument is analogous.

These apparently obvious calculating steps massively in-
crease the expressiveness of the information that can be de-
rived from traps, place invariants and the canonical inktigs
p > [ ] (cf. Section 9.4).

Figure 12.1 shows a technical example syst€nmwith the
valid inequality

A+E<1. (1)

To prove (1) we need the following two equations derived from
place invariants:

A+B+C=1, (2)
D+E=1 (3)

as well as the inequality
B+C+D>1 4)

derived from the initially marked trapB,C,D}. With this, (1)
is the result of (2} (3) — (4).



12.2. State Properties of the Mutual Exclusion System 133

12.2 State Properties of the Mutual Ex-
clusion System

The central property of the mutual exclusion system in Fig. 3
is

C+G<l. (5)

This follows from the place invariant
C+D+G=1
by subtracting the canonical inequality
D>0

of D (i.e., the addition of-D < 0).

12.3 State Properties of the Crosstalk
Algorithm

Figure 12.2 expands the crosstalk algorithm in Fig.5.2 ey th
six placexQ, R, S andU, V, W, whereQ, R andS “count” the
cycles of the left agent ordered by three properties:

Q-cycle: [sends a message and receives a
confirmation.

R-cycle: [ sends a message and receives a
message (crosstalk).

S-cycle: [ receives a message and sends a
confirmation.

Likewise, the places), V andW “count” the cycles of the
right agent-, ordered by the respective properties-of

Now we want to show that the cycles “match each other”:
if both agents are in their idle states, each two correspandi
places hold equally many tokens. Technically, this means fo
each reachable marking with M/ (A) = M (D) = 1:



134 Combining Traps and Place Invariants of Elementary Systera Net

b | h

Figure 12.2: The crosstalk algorithm, expanded by six cng®, R, S,
u,Vv,w

M(@Q) = M(W) (6)
MR) = M(V) (7)
M(S) = M(U) (8)

To prove (6) we first derive a series of valid inequalities:

0] Q+H-—-W=0 place invariant

(i) H > 0 canonical inequality
(iii) Q-W<0 (i)~ (i)

(iv) Q < W (iii), transposition
(v) W—-H-Q=0 place invariant

(vii D4+H+I+J+K=1 placeinvariant

(vii) 1>0

(viii) J>0

(ix) K>0

(x) W—Q+D<1 (v)+(vi)-(vii)-(viii)-(ix)

For each reachable markidd with M/ (D) = 1:



12.4. Unstable Properties 135

(xi) M(Q) < M(W) according to (iv)
(xii) M(W) < M(Q) according to (x)

(6) now follows from (xi) and (xii). Propositions (7) and (8)
are derived analogously.

12.4 Unstable Properties

A majority of the important state properties of an elementar
system netV can usually be formulated as valid equations or
inequalities (cf. Section 9.2). In Sections 9.4, 10.1 an@ Wk
introduced three techniques for deriving valid equationd a
inequalities:

e For each place of IV, the canonical inequality
p=0

of p holds, based on the rules for the occurrence of transi-
tions.

e Each initially marked trap generates a valid inequality of
the form

prt...+p =1,
wherep, ..., p, are the places aV.

e Each place invariant generates a valid equation of the form
ny-p1r+...+ N0, pr = nNg,

whereny, . .., n; are integers, ang, . . ., p, are the places
of N.

An equation or inequality is stablein an elementary sys-  stable state property
tem net if for each step/ L5 M’ of N the following holds:
If « holds inA/, thena also holds inM’.

It is irrelevant here whether or ndt is reachable inV. It
is easily asserted that each canonical inequality as wekels



136

Combining Traps and Place Invariants of Elementary Systera Net

D c

unstable propertyA+E< 1

equation or inequality derived from a trap or place invarian
stable.

However, important valid equations or inequalities aremft
unstable. A typical example is the inequality (1) for theteys
net in Fig. 12.1. This inequality holds in the (unreachable)

marking ABD. The stepABD C, ABEis a step ofN, where

the reached markingBE violates the inequality (1).
Similarly, the inequality (5) for the mutual exclusion st

holds in the (unreachable) — markiB@G. After the ste@BDG

£> CG the reached markingG violates (5).

Nevertheless, it was possible to prove the inequalities (1)
and (5) for the system nets in Figs.12.1 and 12.2: the additio
of valid, stable equations and inequalities yields validiaeq
tions and inequalities that may be unstable.

In practice, most important state properties can be proven
by adding canonical inequalities as well as equations and in
equalities derived from traps and place invariants. Texdini
examples like modulo equations (cf. Section 9.6) or propert
like “The number of tokens ip, ..., p, is a prime number.”
rarely occur in practical applications.



12.4. Unstable Properties 137

Exercises

1. Find a proof for each of the inequalities given in (a), (i)l &), Figs. 12.3-12.5. Do this by
adding equations and inequalities derived from place iaugs, initially marked traps and
canonical inequalities of the respective system nets.

Figure 12.3B + C < 1 is valid

(b) a C
A B c
b D Figure 12.4.C + D > 1is valid

Figure 12.5C + D < 1 is valid

2. In the light/fan system in Fig. 7.2, the cold transitiemsich light on andswitch light off are
the user'sactions The transitiongan starts andfan stops are the system’seactions Show
that there cannot occur more reactions than actions.

Hint: Expand Fig. 7.2 by a plade, as shown in Fig. 12.6. Evidentl§ is marked if and
only if there have occurred more actions than reactions. slwaw that whenever a reaction
is possible in the original system in Fig. 7.2, the pl&de the expanded system is marked.
(Thus, the corresponding reaction is also possible in thamdted system.)



138 Combining Traps and Place Invariants of Elementary Systera Net

Figure 12.6: Light/fan system from Fig. 7.2 with changedatations and expanded by plaee

3. Show that the propositions (7) and (8) hold in the systenimiéig. 12.2.

* 4. Prove the following: each equation derived from a plasariant, each inequality derived
from an initially marked trap and each canonical inequastgtable.



Traps and Place Invariants of Chapter 13
Generic System Nets

Analogously to Chapters 10 and 11, traps and place invari-
ants can also be formulated for generic system nets. Traps ar
less important here, and we will show only one example. The
place-invariant calculus uses expressions as they ocancin
labelings.

13.1 Traps of a System Net

Traps of elementary and generic system nets are strugturall If there exists a placeg € Q
identical. Condition (1) in Chapter 10 suffices. Of interest is such thap € *t, then there also

the following inequality derived from an initially markedap exists a placgy € @ such that
Q:{917-~-7(Ir}: q € t°.
la |+ ..+ g > 1. (1) inequality of a trap

Its validity is obvious. One can often be even more precise, a
Fig. 13.1 shows. If(f(u;)) = u; fori = 1,...,n, then the in-
equalityA+C+f(D) > [uy, ..., u,] holds for the tragdA,C,D}.

f(x)

Figure 13.1: Trap{A, C, D} with the inequalityA + C + f(D) >
[uy,...,U,], holding if f(f(u;))=u;



140

Traps and Place Invariants of Generic System Nets

sum expression

product of sum expressions

13.2 Sum Expressions

As described in Chapter 2, the arcs of a systemMetre la-
beled with expressions. Typical expressions of this tyme ar
constants like®, [, =, e, variables likex, y and expressions
like x-1 or f(x). However, they can also be more complex, as
for instance(x+1)mod 60 in Fig. 4.9. In general, an arc can be
labeled with several expressions, for instance, Wihandr(x)

as in Fig. 9.1. Section 2.6 explains that such a set of expres-
sions (with values assigned to the variables) describesla mu
tiset. We now use expressions to formulate the sum of such
multisets: thesumb; + b, of two expressions; andb, as well

as theinverse—b of an expressioh are again expressions. As
with numbers, we writé; — b, for b, + (—b2) and assume a
special expressior)” for the empty multiset.

By applying the following arithmetic rules, we caalcu-
late with such expressions, b,, b3 just as with numbers:

bi + by = by + by,

(b1 + ba) + b3 = by + (ba + b3),
by +0 = by,

by — b =0.

Such expressions together with their arithmetic rules alled
sum expressiondVith these arithmetic rules, a sum expression
describes a multiset:

by + ...+ b, describesb,, . .., b, and0 describes |. (2)

13.3 Multiplying Sum Expressions

For technical reasons, we need to be ablmtdtiply sum ex-
pressions. Lek; andb, be sum expressions, whérecontains

at most one variable. However, this one variable may occur
several times ith;, as for instance, the variabtdn g(z, h(2)).

We define theproductb; - b, to be again a sum expression.

It is generated by replacing each occurrence of the variable



13.4. Applying a Sum Expression to a Multiset 141

in by with b,. As an example, consider the produgct: b, of
bl - g(Z, h(Z)) andb2 - f(xay)

9(z, M=) - f(z,y) = g(f(z,y), h(f(z,y)).

Likewise, the produch; - b, of by = f(x) andby = (y + z) is
generated as follows:

f@)-(y+2)=fly+2)

In particular,b; - by = by if b; does not contain any variables at
a.”, andb1 . bQ = bg if b1 = .

The producb; - b, evidently contains only the variables of
bo. In particular, “real” sum expressions may also occur in
such products as the arguments for functions, a&in+ vy).

With additional arithmetic rules, such expressions caragsy
be transposed into “normal” sum expressions. For each unary

function f:
f(b1+b2) = f(by) + f(ba), calculation rules
f(=0) =—f(b),
f(0) =o.

13.4 Applying a Sum Expression to a
Multiset

As described in Section 2.6, each expresgiomith at most
onevariablex for an element; of a universel/ can be eval-
uated by replacing each occurrencerofiith «. The result is
again an element df, written asb(u). Generalized to include

multisets, let
If uy,...,u, are considered expressions (without variables),

then (3) together with (2) corresponds to the equation

In (3) the sum expressidnrepresents a function thatag-
plied toa multisetuy, . . ., u,| and again yields a multiset.



142

Traps and Place Invariants of Generic System Nets

matrix of a system net

place invariant of a system net

13.5 The Matrix N of a System NetN

In the following sections, lelv be a system net with the places
p1, ...,k and the transitionsg,, ..., t,. The labelingp;¢; of

the arc fromp; to ¢t; generally consists afeveralexpressions
ai,...,a,. They are henceforth written as a sum expression
ai + ...+ a,. Likewise, the labeling;p; of the arc from¢; to

p; forms a sum expression. With this, we construct the entry
N(i, j) of thematrix IV of IV as the sum expression

N(i, j) =def ;i — pit;.

Figure 13.2 shows six technical examples of generic system
nets/V; and their respective matricés,. To improve readabil-
ity, occurrences of the term “0” are omitted.

13.6 The Place Invariants of a System
Net

Now letb = (by,...,br) be a vector of sum expressiohs
(i =1,...,k), each containing at most one variabbesolves
the system of equations

z-N=0 (4)
if and only if for eachy:
by - N(1,j) 4+ ...+ bp- N(k,7) = 0.

Each solution to (4) is @lace invariantof N. Figure 13.2
shows place invariants of the system n&is. .., Ng. The in-
variant of N5 presupposes the inverse functidn$ andg'.
The invariant ofNg only holds iff(f(x)) = x.

The variable of each sum expressigrof a place invariant
(b, ...,b,) of asystem nel is arbitrary. However, it is often
convenient to use thah place of N as the variable fob;. In
Fig. 13.2 we follow this convention.



13.6. The Place Invariants of a System Net

143

N, N, | t | i | My
@AD—X’iI% A -X f(A) +g(A) | u+v
9(x) B | f(x) +9(x) B
N, ‘
s N[t i | M
A ¢ fix A | x | f(A)+g(A) |u+v
G2 . B | f(x) B
C | g(x) C
g(x
Ny | t | i | M
A -X f(A) u
B -y 9(B)
C |fx)+galy)| C
N, | t | i | M
A -X If(A)| | u
B -y l9(B)|

C | f(xy)+axy) | [C|

Ns
t - B
A oA ~CD O Nt u | i | M
@\Z<: . A | x X A u-+v
X D“ — B | f(x) f1(B)
9% C 99 | g7'(C)
with f-1(f(x)) = x
andg~'(g(x)) = x
N
A X t .
— Ne| t | i | M,
®‘7(X)/D A [T00-x [A+1A) | u

with f(f(x)) = x

Figure 13.2: System nets with matrices, invariants and teansaderived
from them

equation ofi:
f(A) + g(A) +B =
[f(u), 9(u), f(v), 9(v)]

equation ofi:
f(A) +g(A) +B +C =
[f(u), g(u), f(v), 9(v)]

equation ofi:
f(A) +9(B) +C =
[f(u), g(u)]

equation ofi:
/Al + [B] +|C| =2

equation ofi:
A+f1B)+g7i(C) =
[u, V]

equation ofi:
A +f(A) = [u, f(u)]



144

Traps and Place Invariants of Generic System Nets

constant of a place invariant

equation of a place invariant

13.7 The Constant of a Place Invariant

The initial marking)M, of N determines the value of the con-
stant of a place invariarit = (b,...,b;). Thereby, the ex-
pressions; are applied to the initial marking of the places
(cf. Section 13.4). The resulting multisets are then addée.
constant ob is thus the multiset

b1(Mo(p1)) + - - . + bi(Mo(p))-

Example: The constant of the place invariaot V; in Fig. 13.2
is the multisetf(u),g(u),f(v),g(v)].

13.8 The Equation of a Place Invariant

We have now gathered everything we need to formulate valid
equations: for a place invariabt= (b, ..., b;) of N with the
constant,

is theequation ofb. Figure 13.2 shows the equations of the
place invariants of the system net§, ..., Ns. Section 9.2
describes the validity of such equations\in With this, we can
formulate the central theorem for place invariants of gener
system nets:

Theorem 15(Generic Place Invariant Theorem)et N be a
system net and létbe a place invariant ofV. Then the equa-
tion of b holds in V.

The (quite extensive) proof is left to the reader. With this
theorem, the derived equations shown in Fig. 13.2 thus mold i
the system netd/;, ..., Ng.

The question remains of how to calculate place invariants.
This is already quite challenging for elementary systens,net
because integer solutions are required there. Othenkisdnt
variants would not have any intuitive meaning. At least it is
possible to divide and apply the usual Gauss eliminatiorethe
However, generic system nets do not know division. In prac-
tice, system properties and place invariants are not agfyles



13.9. Properties of the Philosophers System 145

calculated, but are specifically required or assumed. Soch a
assumption is easily tested by inserting the respectiveegal
Occasionally, an assumed place invariant is “almost” abrre
and can be adjusted by systematic trial and error.

13.9 Properties of the Philosophers Sys-
tem
Figure 13.3 shows the matrix and three place invariantseof th

philosophers system in Fig. 9.1. The equations of theseiinva thinking
ants are

available

thinking + dining = [py, ..., Ps), (5)
available + [(dining) + r(dining) = [9;,...,95],  (6)
[(thinking) + r(thinking) — available = [g,,...,9;].  (7)

According to Theorem 15, they hold in the philosophers
system. Intuitively, (5) means for each reachable state of a
philosophemp,: eitherp, is thinking orp, is dining. Equation
(6) asserts for each chopstigk it is either available or is the
left chopstick of a dining philosopher or the right chopistic
of a dining philosopher. The intuitive meaning of (7) is bett
understood when represented as

available + [g,, . .., g5] = [(thinking) 4 r(thinking),  (8)

M t | u | MO
thinking —z T 1, ps)
available | —(I(x) + r(z)) L) +7r(x) | [91,---,95)
dining T —T

i | io | 13
thinking | t [(t) +r(t)
available a -a
dining d | I(d) +r(d)

Figure 13.3: MatrixV, initial marking M, and three place invariants of the
philosophers system



146 Traps and Place Invariants of Generic System Nets

where for each chopstiak we distinguish two cases:

1. g, is notavailable. Theng, occurs exactly once on the left
side of (8). This means that, according to the right side
of (8), there exists exactly onkinking philosopher, whose
left or right chopstick isy,. Thus, the other user of the
chopstick isdining.

2. g; is available. Theng, occurs twice on the left side of
(8). This means that there exist two thinking philosophers
p andq such thay, is the left chopstick op and the right
chopstick ofq.

13.10 Properties of the Kindergarten Game

To understand the model of the kindergarten game in Fig, 4.13
we derive a valid equation from one of its invariants.

| 4 | t | 5 | b | M,
children | —[o] | [o] —[0,0] | —[e] | f(z) | B-[e] + W - [o]

with f(e) =0, f(o)=1andl+1=0

Figure 13.4: Matrix, place invariant and initial markingtbé kindergarten
game

Figure 13.4 shows its matrix, an invariaheind its initial
marking M,. Together with the modulo-2 equatidnt- 1 = 0
in Fig. 13.4, the functiorf in b maps each multiset of children
to either O or 1 (cf. Sect. 9.6). First we show thas$ indeed a
modulo invariant (cf. Sect. 11.3). For the productof (b,)
and the second columiV (1, 2)), the following holds:

by - N(1,2) = f(x) - ([o] = [0, 0])
= [(z)-[o] = f(z) - [o, 0]
= f(le]) = f([o;0])
= f([o]) = (f([e] + f([e]))
=0-(1+1)=0-0=0



13.10. Properties of the Kindergarten Game 147

For the first and third column, the following holds:

The initial marking)/, consists of two number8 and W
of children dressed in black and white, respectively:
My (children) = B-[e]+W-[o]. With this marking, the constant
of the invariant has the value

0, if Wiseven
] 1, if Wisodd.

Thus, the equation dfis

0, if Wiseven

J(children) = { 1, if Wis odd.

Because the equation holds M, in particular, it holds in the
final markingM s;,,,; with only one tokermn in children:
M ¢ina (children) = [m]. Thus:

m=e< f(m)=0
& Wis even,

m=o<« f(m)=1
& Wis odd.

It follows directly: the dress color of the last remainingldh
depends neither on the order in which the children form pairs
and leave the play area, nor on the number of children ihijtial
dressed in black. It depends solely on whether the number of
children initially dressed in white is odd or even.



148 Traps and Place Invariants of Generic System Nets

Exercises

1. Construct the matrix of the system net in Fig. 13.1. Find plaxe invariants and derive
their respective equations.

2. Construct the matrix of the system net in Fig. 13.5. Find plaxe invariants and derive
their respective equations. Lif(x)) = x in this system net.

X f(x)

A
o
M

B D Figure 13.5: System net witlif(x)) = x

* 3. Prove Theorem 15.

Further Reading

A calculus for place invariants of generic system nets wap@sed in the first publication on
nets with individual tokens [28], but with a commutative guat. Jensen [37] has developed a
semantic calculus with multisets and functions on mukisdBlumerous works on the clarifica-
tion of the respective interrelations followed.

The representations and calculations of place invaridrgsmeric system nets are as diverse
as the representations of the respective system nets. $tanae, a colored net is, according to
[37] and [38], a “folded” elementary system net. Likewisegtntes and place invariants are
“folded” versions of elementary system nets. Girault antky29] emphasize the functions on
arcs, while [64] emphasizes the role of symbols.

Schmidt [72] shows how to calculate traps and cotraps okgaystets. There exist compara-
tively few publications on this topic.



13.10. Properties of the Kindergarten Game 149

Typed and Untyped Formalisms

Most programming languages use explicit data types, tilgiceal, int, char, bool, as well as
types likerecordsor arrayscomposed from them. Each variable of a program is assigrad su
a type. An attempt to assign to a variable a value that faltside the variable’s type results

in an error message. Thigpingallows a compiler to generate efficient code and to recognize
some inconsistencies in the program during compile time.

Similarly to the variables of a program, the places of a sypstet can be typed: a plage
can only hold tokens of specific type (as, for instance, thegavailable in Fig. 9.1, which can
only hold chopsticks) op may have an upper bound for the number of tokens it can hold (cf
Chapter 6). Many variants of Petri nets type their places bgrehng the rule for the occurrence
of transitions: the generated tokens have to fulfill the eeipe conditions. Jensen’s colored
nets [38] are a prominent example.

We use an untyped version in this book. It is technically $anbut is as expressive as
a typed calculus. However, a system net is intuitively easieinderstand if each place has a
specified token type. We suggest to detnandand construct such properties, buvarifythem
instead. Place invariants are especially suited for thigs Suggestion conforms to the approach
of numerous other modeling techniques in which properges (typing) are not demanded, but
are verified. Lamport, for instance, uses this approach tivate the absence of types in TLA
[42].



150 Traps and Place Invariants of Generic System Nets

Dijkstra’s Pebble Game

ThePebble Gameriginated in the circle around Edsger W. Dijkstra [20] (Rb§ries names
K. Scholten as the author). It is a variant of the kindergag@me described in Section 4.6 that
uses black and white pebbles in a pot as well as a game mastieadnof autonomous children
in a play area. The system is modeled nondeterministicaitlyia an example of a program
whose complex termination behavior (the last pebble iskbiiaand only if the initial number
of white pebbles is even) is easily understood by means @frpro invariants. The program is
very popular in introductory texts (for instance, in [31]).

This example clearly shows the general connection betwesgrgms and Petri nets: a pro-
gram is executed by an operating system (here: the gamenndste operating system initiates
the execution of an instruction. In the case of nondetesmnit chooses one of several alter-
natives. Petri nets do not assume such an executing entitgnAbled transition occurs without
any external influence. Therefore, the kindergarten gangeastion 4.6 does not have a game
master. If the play area is “very large” or if “very many” athien are playing, nobody can
keep track of, much less control, the game. The concept diitebuted run is therefore very
appropriate here. Further aspects of this example ares$isdun [67].



Marking and Covering Graphs Chapter 14

The marking grapltz of a system netV has already been in-
troduced in Section 2.8. Its nodes are the reachable sittes,
edges the reachable steps/df We will specify a series of
properties ofV that are mirrored irt.

However,G is generally infinitely large. We therefore con-
struct the finitecovering graphH, which approximates:. A
series of necessary or sufficient conditions for some ptigzer
of N can be specified by means &t

14.1 Deriving Properties from the Mark-
ing Graph

Finite marking graphs may very well exceed exponential ginow
with respect to the size df. Therefore, they are generally un-
suited for manual analysis of properties/6f Nevertheless, a
few properties of a system net can be identified by means of its
marking graph.

We define six such properties of system n¥tand imme-
diately characterize them as properties of the markingrgéap
of N:

e N terminatesi.e., each run ofV is finite: GG is finite and
does not contain any loops.

e N isdeadlock-fregi.e., each reachable marking enables at
least one transition: each node@fis the start of at least
one edge.

e Nislive, i.e., for each reachable markiig and each tran-
sitiont there exists a markingy/’ that is reachable from/
and enables: for each transitiont there starts a path at
each node of7 such that occurs in its edge labeling.



152

Marking and Covering Graphs

e N is weakly live i.e., for each transitiom there exists a
reachable marking that enablesat least one edge @f is
labeled witht.

e N is boundedi.e., there exists a numbérsuch that each
place contains at mosttokens in any reachable marking:
G is finite.

e N isreversible i.e., from each reachable marking, the ini-
tial marking can be reached: is strongly connected.

With this, a series of properties of system nets are reduced
to graph theoretical problems. As an example, Fig. 14.1 show
an elementary system net with two unbounded pl&esnd
C. Figure 14.2 shows an initial segment of its marking graph.
With the above characterizations of properti&sis deadlock-
free, not live, weakly live, unbounded and not reversible.

Figure 14.1: System net with unbounded places

14.2 The Idea of the Covering Graph

An elementary system nét with at least one unbounded place
has an infinite marking graph. We therefore construct a finite
covering graph that approximates the marking graph: regu-
lar, infinite substructures of the marking graph are coneléns
into finite subgraphs by means ©fmarkings The procedure

is ambiguous:N may have several distinct covering graphs.
However, they all fulfill the required purpose.



14.3. w-Markings

153

( a 0010 —= =011 —» 012 —» 013

2T

b 001 020 —C +» 021 —C » 022 -
6
030 —% = 031 -

Figure 14.2: Initial segment of the marking graph of Fig.11&ach mark-
ing M is written asM (A) M (B) M (C))

Technically, H uses markings// with entries of the form
M (p) = w. Intuitively, such anv-marking indicates that the
placep is unbounded: for each boundhere exists a reachable
markingM such thatV/ (p) > n.

Four questions can be answered with the help of the cover-
ing graph:

Is the number of reachable markings finite or infinite?

Which places may accumulate unboundedly many tokens?

Which sets of places may simultaneously accumulate un-
boundedly many tokens?

For a given transition, does a reachable markidg exist
that enableg?

14.3 w-Markings

w-markingsM generalize the usual markings by indicating the
unboundedness of a plapewith M (p) = w. An w-marking
M of an elementary system nat with a place seP is thus a
mapping

M: P — NU{w}.



154

Marking and Covering Graphs

covering graph

(a) initial segment of{ for

(b)
()

Fig. 14.1:
2. 010 —— 010
\ P
100

Step01u> —° + 0l

c

\\' o 010 —— 010
100

To handlew-markings, we supplement the usual arithmetic
rules with
wH+l=w-1=w.

With the definitions in Section 3.1, steps — M’ in partic-
ular are well-defined fow-markingsM and M.

We extend the order. of natural numbers by
n<w
and call anv-marking M less than or equal td/’, written as
M <M

if M(p) < M'(p) for each place of N.
With the marking notationM (A)M (B)M(C) shown in
Fig. 14.2,

0wl -3 000 -5 0wl

describes two (unreachable) steps of the system net in4ig. 1

14.4 The Construction of the Covering
Graph

A covering graphH of a system nelV is constructed step by

step. Each step generates an edge to an existing or to a new

node. Initially, H does not have any edges and only one node,
the initial marking/M/, of V.

Now let the graph be partially constructed:

a) Letthew-markingM already be a node df.

b) Let NV have a step of the form/ L M.
c) Letthere be no-labeled edge i that starts in/.
Then thew-markingM” is defined for each plageof N as:

w, if there exists a path from/, to M
. that contains a nodgé such that
M"(p) =der L < M andL(p) < M(p)

M'(p), otherwise



14.5. The Finiteness of the Covering Graph

155

The edgeM/ —'5 M" is now added to the graph. M" is
not already a node, it is added as a new one. The algorithm ter-
minates if for each nod&/ and each transitionthat is enabled
in M, there exists &-labeled edge that starts iv1.

During the construction off there generally exist several
nodes with several enabled transitions that have not been pr
cessed yet. Depending on the order in which these transi-
tions are processed, different covering graphs may be gener
ated. Figure 14.3 shows two distinct covering graphs of the
system net shown in Fig. 14.1.

(a9, T3

010 —» 01w Oww
a 2 4
100 d ;
A
001

b 001

Figure 14.3: Two covering graphs of the elementary systernmriég. 14.1.
As in Fig. 14.2, markingd/ are written as\/ (A) M (B) M (C). The indices
on the edges indicate the order of their construction

If a system net is bounded and has a finite number of reach-
able markings, its covering graph does not contain any ™real
w-markings. The result of the construction is its markingogra
as introduced in Section 2.8.

14.5 The Finiteness of the Covering Graph

A covering graph is only useful if its construction termiesit
This is always the case:

Theorem 16(Theorem on the Finiteness of Covering Graphs)
A covering graph of an elementary system neis always
finite.



156

Marking and Covering Graphs

The theorem’s proof is essentially based on the following
property: to each sequeng& M . . . of mutually distinct mark-
ings M; of N there exists an increasing sequenge< n; <
... of indices such that

M,, < M,, <..., (1)

where M < M’ for two markingsM and M’ if and only if
M(p) < M'(p) for each placen of N and M (q) < M'(q)
for at least one place of N. The proof is left as an exercise.
Intuitively, (1) is based on the fact that there do not exist a
infinitely decreasing sequencks> k, > ... of natural num-
bers.

For an indirect proof of the theorem, we now assume that
an infinite covering graphlf of N would indeed exist. Ac-
cording to the construction of covering graphs in the presio
section, each node is reachable fréfg and only has a finite
number of successors. Therefore, becatise infinite, during
its construction, an infinite path

t t
My s My 2

of mutually distinct nodes (according to &ig’s Lemma”) is
generated. According to (1), the (infinite) sequenég\/; . ..
contains an infinitely increasing subsequenég, < M,; <

According to the construction of covering graphs, the
number of placep with M,;(p) = w increases with each,.
This would require infinitely many places. Howevér,only
has a finite number of places. The proof follows by contradic-
tion.

14.6 The Covering of Sequential Runs

Let N be an elementary system net. Aamarking A/ of N
coversa marking)M if for each placep of V:

This leads to:



14.7. Simultaneously Unbounded Places 157

Theorem 17(Covering Theorem)Let H be a covering graph
of an elementary system n€t For each sequential ruft/, I
M, 2y of N there exists inH a path M o, 2
M, - - - inwhich eachV/; covers the markingZ; (i = 1,2,...).

counterexample:

The proof follows from the construction éf via induction a c d
) ) 100 — 010 — O0lw —
overi. The converse is generally not true. 0
_ ww — Oww - - -
In general, different system nets may have the same cover-

. . . is a path in both covering graphs
ing graph. The construction of such an example is left as an P g grap
exercise of Fig. 14.3, but not a step

sequence in Fig. 14.1

14.7 Simultaneously Unbounded Places

It is easy to construct trivial covering graphs coveringheac B D
and every sequential run of an elementary system net: each

place contains an-entry. A sensible covering graph only con-

tainsw-entries for the unbounded places. Furthermore, several”

w-entries in a single node indicate simultaneously unbodnde

places: a sef) of places of/N is simultaneously unboundefl c E

for each numbei € N there exists a reachable markingf of D andE are unbounded,

N such that for each € Q: but not simultaneously
M'(q) > i.

In fact, the construction procedure in Section 14.4 onlyegen
ates “sensible” covering graphs. For a nadeof a covering
graph and a placeof N, let

pE Wy iff M(p) = W.
Then:

Theorem 18(Simultaneous Unboundedness Theorebnet H
be a covering graph of an elementary system net. Then, for
each nodeV/ of H, the setwv,, is simultaneously unbounded.

For a proof, letV be a node off and leti € N. We need
to show: there exists a reachable markiig of N such that
M(q) > i for eachq € wy;.



158

Marking and Covering Graphs

The proof is accomplished by induction over the cardinality
of wy: if wy is empty, the proposition is trivial. Otherwise,
the following obviously holds for each eddé; L M, of
H: wy, € wyy,. Furthermore, because the initial marking of
N does not mark any place with, there exists a path if of
the formA’ L> c. t—”) M with wy; = wyr andwyr ; Wt
for each stepl/” —» M.

Then there exists a path fifi of the formL — ... =% M’
with L < M’ andw;, ;Cé wyr. For the construction of\/?,
we assume according to the induction hypothesis a reachable
marking L’ with L'(p) = i + (i +n) -m +nif p € wy, or
Li(p) = L(p) otherwise. Now, starting froni’ let the transi-
tion sequence, ..., u,, occuri + n times in total, followed
by t;,...t,. Each stepu; reduces the number of tokens of
each place inv;, by at most one. Each sequenee. .., u,,
increases the number of tokens of each place pandw, by
at least one. Each stepreduces the number of tokens of each
place inw,;, by at most one. Therefore, the resulting marking
has the property required of’.

14.8 Dead Transitions

A transitiont is deadif no reachable marking enablés The
following theorem is easily proven:

Theorem 19(Theorem on Dead Transitiond)et H be a cov-
ering graph of an elementary system mét A transitiont is
dead in/ if and only if H does not have &labeled edge.

14.9 Covering Graphs of Generic Sys-
tem Nets

The procedure in Section 14.4 can also be applied to construc
the covering graph of a generic system net. The order on mul-
tisets has already been introduced in Section 2.3. Evenythi
else is analogous. In particular, the properties desciib8dc-
tions 14.5 through 14.8 also apply to generic system nets.



14.9. Covering Graphs of Generic System Nets 159

Exercises

1. Construct two different elementary system nets that Hazs@ame covering graph.

2. In the proof of Theorem 16, the following subtask remains:
Let P be afinite setand let/, )M ... be a sequence of mappingg : P — N(: =0,1,...).
Show that there exists a strictly increasing sequence< n; < ... of indices such that
My, < M,, <...
Hint: We recommend induction over the cardinality/of For | P| = 1 and for the induction
step, we recommend the inductive construction of the irsdigen, ... .

3. Construct elementary system natswith the following properties:

(&) N is deadlock-free and not live.
(b) N is unbounded and reversible.
*(c) N is live, bounded and not reversible.

*(d) N is live (i.e., in particular deadlock-free) and reversiatel for the initial marking

My, the following holds:
If in M, an additional token is placed on any of the placesvofthe net with this
new initial marking is no longer deadlock-free.

4. Show for any given elementary system net

(a) If N is deadlock-free, it does not terminate.

(b) If NVis live, itis deadlock-free.

(c) N islive if and only if for each reachable marking 8f, when treated as the initial
marking, there do not exist any dead transitions.

(d) N is bounded if and only if the number of reachable markingd/as$ finite.

(e) If N is bounded, the construction of the covering graph yieldslarking graph of
N.

Further Reading

As early as 1969, Karp and Miller [39] proposed the idea ofdbeering graph. Since then,
various versions have been circulating. They differ in uat@ndability, size, speed of termina-
tion and practicality for particular classes of nets. FIjR&] shows how to construct minimal
covering graphs.

On the basis of classic model-checking procedures, ScH#8{lextracts many of the tem-
poral logic formulas valid in a simple system net from itsoestive covering graph.






Reachability in Elementary Chapter 15
System Nets

Determining the reachability of an arbitrary marking is afe
the interesting, but also one of the most difficult problerhs o
elementary system nets. How to decide whether a marking
of an elementary system nét is reachable (from the initial
marking M;)? If only a finite number of markings is reach-
able, it is possible to construct each of them and test whethe
M is among them. IfM is reachable, it is also possible to
incrementally construct the (possibly infinite) markinggin
until M is eventually encountered.

However, if an infinite number of markings is reachable in
N, andM is not one of them, then this procedure fails. Never-
theless, the problem can be solved: it is possible to coctstru
finite setK of reachable markings a¥ such that)/ is reach-
able if and only ifM is an element of{. However, this set is
incredibly large and it was a long time before the reachigbili
problem was solved.

In this chapter, we will discuss a necessary condition fer th
reachability and thus a sufficient condition for the unredch
ity of a marking. At the same time, we will formulate criteria
for deciding whether a finite or an infinite number of markings
are reachable.

To do this, we will add thenarking equatiorandtransition
invariantsto our set of linear-algebraic tools. The covering
graph, too, yields criteria for the reachability of marksrend
for the finiteness of the set of reachable markings.

15.1 Corollaries of Place Invariants

Some information on the reachable and unreachable markings
of an elementary system nét can be derived from its place
invariants. A direct corollary of the Elementary Place imva



162 Reachability in Elementary System Nets

ants Theorem in Section 11.3 for each markivigof V is: if
N has a place invariartsuch that

ZM%ZMOa

then M is unreachable. The converse is not generally true:
i-M =1i-M,does not guarantee thaf is reachable.

A direct corollary of thePositivePlace Invariants Theorem
in Section 11.4:

Theorem 20(Finiteness Theorem of Positive Place Invariants)
If each place of an elementary system néthas a positive
place invariant, then only a finite number of markings is feac
D is not part of any place invariant. able in V.

Nevertheless, only a finite number
of markings is reachable.

The converse of this theorem is not generally true.

15.2 The Marking Equation

Using the vector representation from Section 11.1, for a se-

quenceM, L LN M, of two steps, the following holds:
M, =M, +t+t. Consequently, for the sequence

My - My 25 My 1 My
the following holds:
M?, :Mo+2t_1+t_2' (1)

This exploits the fact that/; does not depend on the order in
which the transitions occur, only on their frequency.

For an elementary system n&twith [ transitions, lety =
(0,...,0,1,0,...,0) be anl-dimensional vector with “1” at
theith position. Then the produdy - v filters theith column

out of NV. Thus, for the step/ — M’ the following holds:
M=M+N-v.
Thus, (1) can be written as

M3:M0+M‘(2,1,0,...70).



15.2. The Marking Equation 163

In general, for each step sequemciom a marking)/ to a
marking M’, the following holds: ift; occurs exactly:; times
ino (i =1,...,1), then the vectot = (ay, ..., q) solves the
system of equations

M =M+N -z (2) o1 AB % BC % AD % CD
The vectow is called thecounting vectoof o. Reasonably, we ~ counting vector(2, 1)
only consider vectorg = (ay, . . ., a;) with natural numbers;
solutionsof (2). The system of equations (2) is usually written
as
N-z=M-M 3 marking equation

and is called themarking equation forM and M’. A direct
consequence of its construction is:

Theorem 21 (Theorem on the Marking Equatianl.et N be

an elementary system net with a step sequerfoem a mark- N:
ing M to a markingM’. The counting vector af solves the A
marking equation for\/ and M.

The converse is not generally true: not each solutitmthe Let M =4.; AandM’ = D.
marking equation (3) is a counting vector of a step sequence, _ (1, 1) solvesN - = = M’ — M.
from M to M’. However, if it is possible to — figuratively  ng step sequencer — ... — M’
speaking — “borrow” tokens, then each solution to the mark- g, as its counting vector.
ing equation is a counting vector of a step sequence: With L — C, the following holds:

Theorem 22(Viability Theorem) Let N be an elementary sys- v +1 2B Q M + L.

tem net with markingd/ and /" and a solutioru to the mark-
ing equation (3). Then there exists a markingf N and a step
sequence from M + L to M’ + L such thatz is the counting
vector ofo.

For a proof, one can choose a sufficiently lafgsuch that
all transitions ino can occur independently from one another.

The “borrowing” of tokens is only necessary if the nét
contains a cycle, that is, if a chain of arcs closes a circta- O
erwise, N is acyclic Each solution to (3) is then the counting
vector of a step sequence frah to M-

Theorem 23(Acyclic Viability Theorem) Let NV be an acyclic
elementary system net with markingsand M’, and leta be

a solution to the marking equation fd/ and M’. Thena is

the counting vector of a step sequence frbfro M.



164

Reachability in Elementary System Nets

transition invariant

B

N has no transition invariant

The theorem can be proved by induction over the sum of the
components of.. The transitions “leading” inV are marked
in M.

From the Theorem on the Marking Equation, there immedi-
ately follows: if there does not exist a solution to (3), theh
is unreachable from/.

15.3 Transition Invariants

Of interest is the special cadé = M’ in the marking equation
(3). Then the equation is reduced to

N.z=70, (4)

where the length of the vectay — (0,...,0) is equal to the

number of places ofV. Analogously to (3) in Section 11.3,
a solutionm = (mq,...,my) to (4) with natural numbers
mq, ..., my IS atransition invariantof N. A direct corollary

of (3) in Section 15.2 is:

Theorem 24(Transition Invariants Theorem).eta be a tran-
sition invariant of an elementary system métand leto be a
step sequence from a marking to a marking)M’ such thata
is the counting vector of. Then)M and M’ are identical.

The converse also holds and yields:

Theorem 25(Reproducibility Theorem)If an elementary sys-
tem netN does not have any transition invariants, then no
marking is again reachable from itself.

Transition invariants are of interest in various contexts.
N is bounded (if covered by a positive place invariant, for in-
stance) and a transitiondoes not occur in any transition in-
variant with an entry> 0, thent occurs only a finite number of
times.

The frequencies of the transitions of a scenario (cf. Set}. 5
form a transition invariant. Likewise, transition invarta with
small entries are candidates for the construction of seanar



15.3. Transition Invariants 165

Exercises

1. Disprove the converse of Theorem 21: Construct an elemyesyatem netV with an un-
reachable marking/’, whose marking equatioty - = = M’ — M, has a solution with
natural-number entries.

2. Calculate three viable transition invariants of the dadksalgorithm in Fig. 3.9.
Hint: Consider the connection between transition invagamd scenarios.

3. Prove the Acyclic Viability Theorem (Theorem 23).

Further Reading

The question regarding the reachability of a markivigfrom a markingM/, has been around
since the 1960s. Karp and Miller [39] posed it as a purely em@ttical problem concerning the
existence of a sequence of arbitrarily many instances frgnen finite set of integral vectors,
whose partial sums do not have any negative componentspiidtidem is much more difficult
than it may seem, and it was not until 1980 that Mayr solved4i,[[48]. Since then, numerous
versions of its proof have been presented.

Reutenauer [71] puts the reachability problem in the corteather mathematical questions.
The proof of Priese and Wimmel [61] is comparatively easyetdr.

The memory requirements of each algorithm for the probleowgexponentially with the
size of the net (for the specialist: it is EXPTIME hard). Thiskes it clear that there exists
no general, practicable procedure for deciding the realityali herefore, other techniques for
deriving necessary and sufficient criteria for the readhglare employed, based in particular
on traps, cotraps, place invariants, covering graphs, imagquations and transition invariants.

Transition invariants were introduced by Lautenbach [43].






Run Properties Chapter 16

The question raised in the previous chapter, whether ot it i
possibleio reach a marking/ of a system net, is now strength-
ened to considering whether or ntt is definitelyreached.

16.1 Intuitive Question

This is an entirely new problem, because each question cov-
ered thus far (in Chaps. 9-15) only relates to properties-of in
dividual, reachable markings or (like reversibility anceiness)

to individual paths in the marking or covering graph. Howeve
the question of whether a marking is definitely reachedeslat
to each and every run of the corresponding system net.

The crosstalk algorithnV in Fig. 3.7 contains a typical ex-
ample: the return of a waiting process to its idle state. bhea

sequential runv = M, 2N M, 2y of N, each mark-
ing M; with M;(waiting,) = 1 is followed by a markingV/; .,

k > 0, with M, . (idle;) = 1. This is not directly obvious and
the question arises how to prove it.

In general, questions relating to properties with simiteus . "
tures arise in many systems: the bell of the bell clock (Fig) 4  [=sof s T |
tolls every hour on the hour. In the kindergarten game (FitB¢ tooe e ° o
only one child will eventually remain in the play area. In the
system of the dining philosophers (Fig. 9.1), each cholpstic
will always become available again.

Some properties are composed of elementary properties[ Ja——= )
For instance, for each inserted coin, the cookie vending ma- "
chine either gives out a cookie packet or returns the coin.i"Whe
the light of the light/fan system (Fig. 7.2) is switched oither
the fan starts at some point or the light is switched off again

Occasionally, it is of interest that a certain propertynat




168

Run Properties

waiting; b e waiting,

run property

run property valid inV

A B C

o0 -0 00

A—BandA— C

valid: the mutual exclusion system (Fig. 3.2) does not guara
tee that each waiting process will eventually become atitic
The crosstalk algorithm (Fig. 3.7) does not require a protes
leave its idle state. All these properties aue propertiesof a
system net.

16.2 Defining Run Properties

In order to comprehend run properties, we fall back on state
properties (Chap. 9) of the form > 1 for placesp. As ex-
plained in Sect. 9.7, we write for a marking

M = p, 1)

(“pisvalid in M) if M(p) > 1. For instancelocal, is valid
in the initial marking M, of the mutual exclusion system in
Fig. 3.2. The logical combination

local, A key.

is also valid in)M,,.

Technically, arun propertyis constructed from two state
properties and f of N and written as

e— f 2)

(“e leads tof”). The validity of e — f does not relate to
an individual marking, but to a sequential ran= M, SN

M; -2 ... of N. Property (2)s valid in¢ if for each index
the following holds:

if M; = e, then)M; = f (3)

foraj > i. Property (3) is valid in a system nat if and only
if (3) is valid in eachcomplete sequential run éf. We write:

NEe— f. 4)

As a technical exampléy — E is valid in the elementary
system net in Fig. 16.1. This property is valid, because each
reachable marking/ with M = A also marksC or D.



16.2. Defining Run Properties 169

A a B

©

C b D

Figure 16.1: Elementary system métwith N = A — E

A typical example is the run property
waiting, — idle;

for the crosstalk algorithm. It describes the already-noewid
return of the left process to its idle state (cf. Sect. 16T)e light off fan stops
run property of the light/fan system, also mentioned in SE&fl,
thus becomes

switch =
light off

light on — (fan running V light off).

light on fan starts

One often wants to express that fraachmarking M a
marking M’ with a propertyf is reached. For instance, from
each reachable marking of the crosstalk algorithm, a mgrkin
that marksidle; is reached. To express this as a property of
the form (2), a state propertyis needed that is valid in each
reachable marking. In the world of logic we obviously choose
e = true. Thus, for the crosstalk algorithm, the following is
valid:

true — idle;.

Thus far, we have covered run properties of elementary sys-
tem nets. Run properties of generic system nets are fornaulate
entirely analogously. The only difference is that indiadito-
kensu in a placep are described as propositional atoms, analo-
gously to (1). As explained in Section 9.7, we write. With
this notation, for instance, the return of the left and rigip-
stick of each dining philosopher in the system net in Fig.i®.1
described as



170

Run Properties

dining.a — (available.l(a) A available.r(a)).

For each inserted coin, the cookie vending machine in
Fig. 1.10 either gives out a cookie packet or returns the.coin
To formulate this, we have to add a return slot to the model,
as shown in Fig. 16.2. Then (using the notations from Sec-
tion 9.7) the following holds:

coin slot.@ — compartment.[] V return slot.@

insertion
possible

Figure 16.2: Addition of a return slot

For the bell clock in Fig. 4.10 and for the kindergarten game
in Fig. 4.13, the respective propertigs.e — on andtrue —
|children| = 1 are obviously valid.

16.3 The Deduction Rule

Section 16.2 defined the validity of a run property in a system
net N over the set of all complete sequential runsh\af The
net N may very well have infinitely many such runs and each
may be infinitely long. To show that a run propeety— f is
valid in a system net, it is obviously impossible to assert fo
each individual run that — f is valid in it. However, it is
possible to deduce simple, valid run properties directyrir
the static structure of a system net and then use them tceederiv
more complex properties.



16.3. The Deduction Rule 171

(1) (2)
A B
A t B t
A B - .
AC — BD
(3) (4)
. 5 A t B”7>
A --»
u ] B
00 - c u D
A—BVC A BV D
(5)
A t B
OO AC — BC V D
e AC — BC V AD
C u D

AC—BCifA— —-E

Figure 16.3: Substructures of a mgtand run properties valid itV

Figure 16.3 shows five examples of small subnets. They are
to be seen as being embedded into a largefhendicated by
the dashed arcs. Each subnet’s corresponding propertgns th
valid in NV (for the notation, cf. Eq. (25) in Sect. 9.7).

Consider, for instance, the case of the subnet (1) occurring
in N: letw be a complete run aV, and let)M be a marking of
w with a token inA. SinceM enables the transitiarand there
are no other transitions iA®, the transitiont will eventually
occur inw. In doing so, a marking//’ with a token inB is
reached. Thereforé, — B is valid in V.

The case of the subnet (4) occurring M is completely



172

Run Properties

eff (@, 1)

analogous: letV/ be a marking ofw with a token inA. The
marking M thus enables the transition Now, during the
course ofw, the placeC may also receive a token. In this case,
u may occur instead of Therefore, we may only conclude
that eithemB or D receives a token.

The example list of valid run properties in Fig. 16.3 is by
no means complete. The general case of elementary system
nets is described by deduction rulefor run properties. For
an elementary system nat with the setP of places, this rule
generates valid properties of the form

Q'_>(f1\/---\/fn>7

where@, fi...., f, € P. With the shorthand of (25) from
Section 9.7, a sefp,, ..., px} of places describes the logical
expressiom; A ... A p,. To formulate the deduction rule, we
define theeffectthat a transitiort of N has onasef) C P as
the set of tokens of) that remain after the occurrence tobr
are newly generated:

eff (Q,t) =aer (Q\°t) Ut".

Figure 16.4 shows examples of the effect of a transition on
different sets of places. I C *t and R n *t = (), then obvi-
ouslyeff (QU R,t) = RUt".

eff (D,t) = eff (AD,t) = eff (ABD,t) = CD

S ..

Figure 16.4: The effect dfon different sets of places

All this leads to the followingdeduction rulefor run prop-
erties of a system néY with a given set) of places of/V:

1. Test applicability: doed/ have a hot transitiohsuch that
*t C Q7 If not, the rule is not applicable.



16.3. The Deduction Rule 173

2. Exclude transitions: choode = {t¢4,...,t,} € @Q°® such
that for eacht € @* the following holds: either € T or
N E Q — —°t.

3. Derive property: the propert§) — eff (Q,t;) V ...V
eff (Q,t,)isvalidin N.

As an example, we prowC — BC for (5) in Fig. 16.3 under
the assumption that — — E:

1. tis a hot transition witltit = A. Thus, the rule is applicable.

2. (AC)* = {t,u}. From the assumption tha& — — E, it
follows thatA — —*u. Thus, we can excludeand choose

T=A{t}.
3. The proof follows, sinceff( AC,t ) = BC.

The following theorem asserts that each property derivad vi
this rule is actually valid inV:

Theorem 26(Theorem on Deduced Run Propertielsg¢t V be
an elementary system net, and dgtoe a subset of its places
such that() enables at least one hot transition 8% LetT =
{t1,...,t,} € Q°® such thatN = @ — —*t for eacht €
Q°\T. Then

NEQm eff(Qt)V ...V eff(Q,t,):

With this theorem, the properties shown in Figs. 16.3 and
16.4 follow immediately. When testing the rule’s applicéipjl
it is important that is hot. If, in the examples in Fig. 16.3, the
transitiont was cold andi was hot, only (3) would be valid. A
property of the formC — ¢ cannot be derived for any of the
examples in Fig. 16.3, becausealone does not enable any
transition.



174

Run Properties

16.4 Proof Graphs

Such simple run properties, deduced directly from the metst
ture, can be used jproof graphgo assert more complex prop-
erties. This technigue exploits a series of charactesisticun
properties. The most important is transitivity:

If NEer— fandN | f — g,

5
then alsaV = e — g. ®)

With this, it is possible to form chains
eopF> €1~ ...€ey (6)

to prove thaky — e,,.

Another important characteristic is the rather simple ocbse
vation that *=” is weaker than the logical implication:

If Nl=e— f,thenN e f. (7

As to the proof: (3) requireg > ¢; herej = i suffices.
Finally, the logical disjunction and-%" can be combined:

|fN):el%(fl\/fg),N):legandN):fgl%g,

8
then alsaV = e — g. ®

Obviously, the propositional conjunction

N E e (finfe) impliesthatN = e — fi andN = e — fo,
and for the propositional disjunction,

NlEe— fiorN e foimpliesthatV = e — (fi1V fa).

The respective converse does not hold.

We now define groof graphas a finite, acyclic graph with
state properties as nodes. A proof graph gi@gor N = p —
g hasp as its initial and; as its final node. For each nodevith

M

.
\}

n

r



16.4. Proof Graphs 175

letN Er— (ryV...Vr,).

Figure 16.5 shows a proof graph fof = A — E with
N from Fig. 16.1. To aid an intuitive understanding, we write
“—»"-edges as =" if “ —" represents the propositional impli-
cation according to (7). Edge labelings indicate the ttzors

that occur. é\) a B
C
a /jb‘ C . b B
Al B BC ¢ BD E

Figure 16.5: Proof graphfaV = A — E

The examples in Fig. 16.3 suffice to show the correctness of
the steps of the proof graph in Fig. 16.5. The first stef> B
follows from (1) in Fig. 16.3. Next is the logical implicatio
B — (BCV BD), which is valid inN due to the place invariant
A+B—C—D = 0. The steBC ~ BD follows withC — —D
from the place invarian€ + D + E = 1. Finally,BD — E is
obvious.



176 Run Properties

Exercises

1. Construct elementary system nets that disprove each &bltbeing propositions:

@ IfNEp—qgandN =r— s, thenN =EpAri— gAs.
(b) I NEgAr—s,thenN =g sorN =1+ s.

2. Prove the following for the crosstalk algorithm in Fig93if the left process leaves its initial
state A, it returns there.

3. (&) The run propertyV = AB — C holds in the system net in Fig. 16.6. Show that this
cannot be proved by means of a proof graph.

c Figure 16.6: System néf with N = AB — C

(b) Add a placeE to N in Fig. 16.6 that representsB, that is, the complement @&.
Now prove for this new system nét’ that N/ = AB — C.
4. Prove or disprove:
(@ IfNEe — fandN ey — f,thenN = (e; Vey) — f.
(b) If N ): (61 V 62) — f, thenN ): €] — f and NV ): €9 > f

* 5. Prove the reading rule for run properties (Theorem 26).

Further Reading

The termrun property as defined in Sect. 16.2, is central to specification tectesdhat are

based on temporal logic [55], [50] and is usually termeddkt”. The reading rule and proof
graph are taken from [64]. A variant of run properties flistributedruns is also proposed
there. Such properties are more liberal and the deductiengsimpler than in Sect. 16.3.



16.4. Proof Graphs 177

Temporal Logic and leads to

Since the end of the 1970s, temporal logic has been usedssfigltg in computer science
to describe and prove important system properties [46].dttiten to the logical operations,
temporal logic uses theodaloperator T1” and interprets it in sequential rumsas follows: if
a propertyy is valid in o, thenCly is even valid in each suffix, that is, in each residual segment
of o. As an abbreviationyy stands for-[1—¢.

With the “linear time” interpretation of temporal logic, armulay is valid in a systemV
(written: N |= o) if and only if ¢ is valid in each run ofV. With this, we can use temporal
logic to express run properties (cf. (4) in Sect. 16.2):

NEe— fiff NEO(e— Of).

The validity of an equation or inequality in NV (cf. Chap. 9) is expressed in the usual notation
of temporal logic asV = OJG.

As early as 1982, Owicki and Lamport [55] emphasized the ma@mee of the ~"-operator
(“leads t0”). Not unlike us, Misra and Chandy use it as the splerator for run properties in
their UNITY formalism [50].

Occasionally, temporal logic is also used in connectiomwistributedruns. This leads to
the formulation of properties that cannot be expressedmitie ambit of sequential runs [64].
However, distributed runs mainly serve as the basigp#otial order model checkinglin this
process, the validity of a propertyin a single cleverly chosen sequential run or in a small set
of initial segments of distributed runs implies the valdiff ¢ in “large” sets of runs [49], [23].






Free-Choice Nets Chapter 17

Traps and place invariants exploit the general structuRetrd
nets. For nets with particular structural properties, thiefree-
choiceproperty, there are further analysis techniques.

17.1 Defining Free-Choice Nets

Essentially, two structural properties describe the dyinaof
a system net:

e Places with multiple succeeding transitions: such a place{><.|?|:
can describe different alternatives and continue a certain

behavior.

e Transitions with multiple preceding places: such a transi- -

tion can synchronize multiple behavioral strands. .
These two structural properties may be closely intertwined

in a system net, for instance, if a place has multiple succeed t

ing transitions and (at least) one of them has another pireged

place. In this case, the local behavior may depend on thesenti --

system net: a token in a plagedoes not necessarily enable P

each succeeding transitiarof p. Additional tokens may in-

dependently appear or disappear in other preceding pldces o

t. Likewise, it is not guaranteed that a synchronizing tramsi

actually occurs.

A free-choice net does not allow such structures: an ele-
mentary system nev is called afree-choice netf for each
placep of N with |p*| > 2 and each transitione p*: pOég
t

*t = {p}. (1)



180

Free-Choice Nets

free-choice net

p
t

ol

not both-~-arcs
at the same time

not live for any initial marking:

the cotragA,C} does not
contain any trap

There is also a completely different motivation for thiseyp
of net: The synchronization of tokens is deterministic. The
tokens required for the occurrence of a transition accuraula
and do not get lost again. For each transitiof N with |*¢| >
2 and each placg € °t, we now require that

p" ={t}. (2)

These two definitions, (1) and (2), actually describe thessam
nets! A third, symmetrical definition also describes the sam
nets: for each arp — ¢ of IV, either

*t={p}orp®={t}. 3)

17.2 The Trap/Cotrap Theorem for Free-
Choice Nets

Chapter 10 has shown that in each elementary system net with
the trap/cotrap property, each reachable marking enalbles a
least one transition. For free-choice nets with the trapépo
property, an even more powerful theorem holds: each transi-
tion can always become enabled again (the net is live, as de-
fined in Chap. 10).

Theorem 27(Trap/Cotrap Theorem for Free-Choice Netspt
N be a free-choice net. The¥ is live if and only if N has the
trap/cotrap property.

The proof is not easy. From this theorem, there immedi-
ately follows: if further tokens are added to the initial ikiag
of a live free-choice net, the result is again a live net. This
does not hold for common elementary system nets. A series
of properties of free-choice nets can be decided compatativ
efficiently.

17.3 Clusters

A cluster is a particularly simple subnet. It turns out thraef
choice nets consist of such clusters.



17.3. Clusters 181

A cluster of a netV is a subset of its places and transitions.
There exist two different types:

1. For a place with p* = {t1,...,t,} (n > 0), let the input
elements’t; of each transitiort; (i = 1,...,n) contain
only p. Then{p,t,...,t,} is free-choice clusteof N: a
token inp has a “free choice” between the transitians

2. For a transitiont with *t = {py,...,pn} (m > 0) let the
post-setp; of each placey; (j = 1,...,m) contain only
t. Then{t,p1,...,py} is adeterministic synchronization
clusterof N. The transitiont occurs after it has “waited”
for the place9., ..., p,, to become marked.

ds-cluster

The particularly simple structure, t} with p* = {t} and*t =
{p} is obviously a cluster of both types.

In Fig. 17.1, the structurefB, a,b} and{C, c,d} are free- p(%jt
choice clusters.{e,D,E} is a deterministic synchronization

cluster, and A, f} is a cluster of both types.

Figure 17.1: A free-choice net with four clusters

The clusters of a free-choice n&tpartition /V:

Theorem 28(Cluster Theorem for Free-Choice Net#)n el-
ementary system néf is a free-choice net if and only if each
place and each transition d¥ lies in exactly one cluster of'.

1f n = 0, thenp® = 0.



182

Free-Choice Nets

The proof uses definition (3) of free-choice netsMfis a
free-choice net, then for each dyc ¢) there exist two possibil-
ities: either*t = {p}, in which case there exists a free-choice
cluster(p,...,t,...), orp® = {t}, in which case there exists a
deterministic synchronization clustér ..., p,...).

If NV is not a free-choice net, then there exist an (@),

a transitionu, and a placey such that,u € p®* andp,q € °t.
Thus,p andt are not part of any cluster.

17.4 The Rank Theorem

A net that adequately models a real system is often live (each
transition may always become enabled again) and bounded
(no place may accumulate unboundedly many tokens). For a
free-choice netV, liveness and boundedness can essentially
be characterized with a connection between the clusters and
the matrix of V: the rank of the matrixV of N is 1 less than

the number of clusters o¥V. The rank ofV is, as usual, the
number of linearly independent columns/gf This yields the
following theorem:

Theorem 29 (Rank Theorem for Free-Choice Netsjor a
connected free-choice nét, there exists an initial marking
with which V is live and bounded if and only if

(&) N has a positive place invariart whose carrier contains
each place ofV

(b) N has a transition invarian§ whose carrier contains each
transition of V

(c) Ifthe rank of N is k, thenN has exactly + 1 clusters.

A comprehensible version of the nontrivial proof can be fibun
in [15].

The free-choice net in Fig. 17.1 satisfies the conditions (a)
and (b). However, its matrix has rank 6. The net thus violates
condition (c), because it only has four clusters.



17.4. The Rank Theorem 183

Exercises

1. Construct the clusters of the free-choice net in Fig. 1B&ermine the type of each cluster.

Figure 17.2: Free-choice net

Figure 17.3: Free-choice net

2. Show that the free-choice net in Fig. 17.3 is live if itdiadimarking marks either of the
placesB, D or E.

3. Extend the answer to exercise 3(b) in Chap. 10.

4. Verify by means of the Rank Theorem whether there existsitinlimarking for the free-
choice net in Fig. 17.4 with which it is live and bounded.

B
O—{]
O—L]
O—L
O—L]

Figure 17.4: Free-choice net

Further Reading

As early as 1972, Michael H.T. Hack [33] defined free-choie¢srand proposed them as
schemata for the assembly and disassembly of composedisbjEarthermore, he defined



184 Free-Choice Nets

the basic terms of the trap and cotrap for system nets anl tlngin, structurally characterized
the live and safe free-choice nets (cf. Chapter 17, TheoremT& linear-algebraic connec-
tions with the Rank Theorem go back to the 1980s. Desel andEspampiled the theory of

free-choice nets in [15].



e —
Marked Graphs Chapter 18

If the free-choice structure is further restricted such tthdoes
not allow any choices at all, the result isrearked graph This
restriction greatly simplifies the analysis. In particulfor
each marked grapN, there exists an initial marking such that
N is live and 1-bounded.

18.1 Defining Marked Graphs

An elementary system néY is a marked graphif for each
placep of N:
I*pl = |p*| = 1. marked graph

Figure 18.1 shows a marked graph.

Figure 18.1: Marked graph

The central structural properties of marked graphs arespath
and cycles. Apathof N is a sequence = p; ... p, of mutu-
ally distinct places with

pz’:°pi+1f0r(i:1,...,n—1).

The sequence is also acycleif cycle



186

Marked Graphs

® o P O

Pn

The marked graph in Fig. 18.1 has eight cyclé®, CD,
EF, ACDB, ACEFDB, CEFD, BGFD, HFD. Itis easy to see that
each cycle is a positive place invariant. Therefore:

Theorem 30(Cycle Theorem for Marked Graphd)et NV be a
marked graph and let; . . . p,, be a cycle ofV, initially holding
a total of k tokens. Then the following equation holds\in

p1+...+pn=k.

18.2 Liveness of Marked Graphs

Section 14.1 has defined the liveness of a systenivVineX net
N is live if for each transitiont and each reachable marking
M of N, the following holds: fromM/ there can be reached a
marking M’ that enables. For a marked graph, this property
directly follows from its structure:

Theorem 31 (Liveness Theorem for Marked Graphsh
marked graphV is live if and only if each cycle a¥ contains
at least one initially marked place.

The if-part is obvious: without an initially marked place, a
cyclew = p;...p, is unmarked in each reachable marking,
becausev is a place invariant. Thus, no transitionih can
ever occur.

To show the only-if-part, led/ be a reachable marking and
t atransition ofN. According to our assumption, each cycle of
N contains at least one initially marked place. Thus, acogrdi
to the above theorem\/ also marks each cycle. Then there
exists a pattpy, ..., p, with p? = t such that the transition
t' in *p; is enabled inM. The stepM s M" reduces the
length of this path. Via induction over the length of such a
path, a marking that enabléss eventually reached.

Each of the eight cycles of the system rétin Fig. 18.1
contains at least one initially marked place. Thiisis live.



18.3. 1-Bounded Marked Graphs 187

18.3 1-Bounded Marked Graphs

Section 3.5 shows the important role of 1-bounded system net
Live, 1-bounded marked graphs are easily characterized:

Theorem 32(Theorem on Live and 1-Bounded Marked Graphs)
A live marked graphV is 1-bounded if and only if each place
of NV is part of a cycle that initially contains exactly one token.

We show the if-part indirectly: Lep be a place that only
belongs to cycles initially containing more than one tokBe-
causeN is live, a markingM is reachable that enables the
transition inp® and thus marky itself. We now temporarily
delete this token fromp. The net/V stays live, because the
resulting marking)M’ still marks each cycle. Therefore, an-
other markingM” that marksp is reachable from\/’. With
the temporarily deleted tokep,now holds two tokens.

The only-if-part immediately follows from Theorem 30.

With the exception of the three cyclés<DB, CEFD and
ACEFDB, each cycle of the system n&tin Fig. 18.1 contains
exactly one initially marked place. Each place\ofies on one
of these cycles. Thusy is 1-bounded.

18.4 Liveness of 1-Bounded Marked Graphs

The question arises: Which marked graphs are live and 1-
bounded at the same time? The answer may be surprising:
each strongly connected marked grdpltan be marked such
that NV is live and 1-bounded. A net is strongly connected if
for each two places there exists a path that connects them.

Theorem 33(Theorem on Initial Markings of Marked Graphs)
For each strongly connected marked graphthere exists an
initial marking such thatV is both live and 1-bounded.

For a proof, we start with a markingy/, that marks each
cycle with at least one token: a simple task. If now theretexis
a place that only lies on cycles with more than one token; indi
vidual tokens are deleted according to the procedure destri



188 Marked Graphs

in the proof of Theorem 32 until a cycle with only one token
remains. The graph in Fig. 18.1 is marked in this way.



18.4. Liveness of 1-Bounded Marked Graphs 189

Exercises

1. With the help of Theorems 31 and 32, test the marked grabptiedollowing figures for
liveness and 1-boundedness:

(a) Figure 18.2

Figure 18.2: System net

(b) Figure 18.1 with the initial marking/, = ADF.
2. Let N be a marked graph, letandu be transitions and lgtbe a place ofV. The transition
t is connected ta via p if *p = {t} andp® = {u}.

N is weakly connected for each two transitiong andwu there exists a sequentg. . ., t,
of transitions such that, = ¢, ¢,, = v and, fori = 1, ..., n, eithert;,_; is connected te,; or
t; iIs connected to;_;.

Show that for each transition invariamt = (m., ..., m;) of a weakly connected marked
graph, the following holdsin; = ms = ... = m,.

Further Reading

Marked graphs were introduced by Genrich in [27]. Arich tlysmn marked graphs was devel-
oped primarily in the 1970s.



190 Marked Graphs

The Customs Facilities Problem

A surprising application of Theorem 33 is the solution to tlistoms facilities problerf26]:
Suppose a city has only one-way roads, designed such thatea aray reach each road from
every other road. Novgustoms facilitieshall be established on some roads such that all drivers
encounter at least one customs facility when driviregreuit, bringing them back to their initial
road. Furthermore, for each road there shall exist a “Sunttayit”. on such a circuit, a driver
encounters exactlgnecustoms facility.

The customs facilities problem pursues the question whethevery such city, customs
facilities can be distributed such that these two condgtiare met.

To solve this problem, each crossroads modeled as a transition, each road from a cross-
roadst to a crossroads as a place with arcs in the direction of travel, and each customs
facility on a roadp as a token irp.

(1O ]

t p u

At first, “sufficiently many” customs facilities are disttited such that each circuit has at least
one. If then a roa@ only lies on circuits with two or more customs facilities stoms facilities
are moved according to the step rule of transitions, anaisigdo the proof of Theorem 33.
Eventually, two customs facilities will reagh One of them is removed. This procedure is
repeated untip lies on at least one circuit with exactly one customs facilithus, a Sunday
circuit is established fop.

This example is notable for the fact that an inherently sfatbblem is solved with a dynamic
procedure.



Well-Formed System Nets Chapter 19

Many real systems have a special state in which each individu
instanceof the system terminates. The system can then be
newly instantiated.

A corresponding system net designates one of its reachable

markings as thdéinal marking Furthermore, it satisfies three
rather intuitive conditions:

e The final marking is reachable from any reachable marking.

e At the end of an instance, no tokens generated in between
remain.

e Each transition can become enabled.

We will see how these three conditions can be verified rather
easily.

19.1 Example: Models of Business Pro-
cesses

A business process is a standardized process for implemgenti
organizational procedures, as they usually occur in achtnai
tions. A business process contains activities that areexied

to each other. In a Petri net model of a business process, each
activity is modeled as a transition. The model itself well-
formedsystem net.

Figure 19.1 shows a Petri net model of a business process
for developing an offer. Its final marking has a token in the
placestop.



192 Well-Formed System Nets

demand
revision

send further
inquiry

receive
answer

agree upon
due date

start stop

send
offer ‘

receive
order

adjust develop ‘
due date design .

determine determine
macrostructure microstructure

Figure 19.1: Business process for developing an offer

19.2 Well-Formed Elementary System
Nets

Let NV be an elementary system net afichn arbitrary reach-
able marking ofN. ThenN together with the final marking
well-formed system net is well-formedif N has the following three properties:

e The final markingFE is unique no marking of the form
E + L is reachable if. marks at least one place.

e NN isweakly live for each transitiort there exists a reach-
able marking that enablés

e N is terminable from each reachable marking, the final
marking can be reached.

19.3 Deciding Well-Formedness

To decide whether an elementary system/Metith the initial
marking M, and the final marking® is well-formed, we ex-
pandN to a netV* and decide whetheY* is live and bounded.
Specifically, we construct a new transition. To this end,
we construct for each plagean arc(p, t z) with the arc weight
start stop E(p) (cf. Section 6.2) and an af¢y, p) with the arc weight
% - ? My(p). Arcs with an arc weight of are omitted. The addition
of tp to N yields N*.



19.3. Deciding Well-Formedness 193

The final marking of the system nét in Fig. 19.1 has ex-
actly one token irstop. Thus, the netV* is generated from
N by adding a new transition such that't = {stop} and
t* = {start}. The two (omitted) arc weights both have the
value 1.

With the concepts of liveness (each transition can always
become enabled again) and boundedness (for eachpllaeee
exists a natural number such that\/ (p) < n for each reach-
able marking)/) the concept of well-formedness can be char-
acterized:

Theorem 34(Well-Formedness Theoremin elementary sys-
tem netV with a final markingE is well-formed if and only if
N* is live and bounded.

This theorem defines well-formedness in terms of already-
known concepts. The well-formedness®fin Fig. 19.1, for
instance, can be verified with the Rank Theorem from Sec-
tion 17.4, becaus#’ is a free-choice net.



194 Well-Formed System Nets

Exercises

1. Does there exist a final markirig such that the system net in Fig. 19.2 is well-formed with
E?

c Figure 19.2: System né¥

* 2. Prove the Well-Formedness Theorem.

3. Show by means of the Well-Formedness Theorem and the Rasdrdin that the system
net in Fig. 19.1 with the final markingtop is well-formed.

Further Reading

The concept of well-formed elementary system nets and tieage for modeling business
processes were introduced by van der Aalst [1]. He discustgisonal variants and aspects of
“well-formed” behavior and proves the Well-Formednessdrken (Theorem 34).



19.3. Deciding Well-Formedness 195

Safety and Liveness

Since the 1970s, a system net has been calealfeif each reachable marking marks each place
with at mostn tokens. We call such system netdoundedin this book. Back thenjveness
and many of its variants stood for aspects of the reachabilimarkings and the possibility to
enable transitions (starting from the initial marking, arabitrary reachable marking). Since
the early 1980s, temporal logic has distinguiskafitty propertieéintuitively: “something bad”
never happens) and/eness propertiegintuitively: eventually, “something good” happens).
Each property of a system net can be composed from its safetjeness properties [5]. A
sensible description of the requirements of a system alimaygsdes properties of both types.

State and run properties, as defined in Chapters 9 and 16, ecelspafety and liveness
properties, respectively. Usually, they are fully suffitiéo describe the central requirements
of a system model. Typical properties that cannot be fortedl¢his way pertain to individual
steps (for instance: “each step increases the number ofigdike 17). However, such prop-
erties directly follow the step rule for transitions. Moveg, interesting system properties are
interesting precisely because they do not only pertaindividual steps.






Part Il

Case Studies






199

This selection of a few examples from hundreds of interest-
ing case studies seems arbitrary and requires an explanatio
We will introduce a variety of problems that cannot be solved
with other modeling techniques, or at least not with the same
set of principles.

In many contextsnutual exclusiors one of the fundamen-
tal problems of distributed systems. Implicit assumptioften
motivate a favored solution. Petri nets make these assanpti
explicit.

The Counterflow Pipeline Process¢€CFPP) is an extreme-
ly dynamic hardware architecture. Its asynchronous desegn
comes patrticularly clear in a Petri net model.

In anagent networkeach agent only communicates with its
respective neighbors without knowing the layout of therenti
network. With very few exceptions, each agent uses the same
local algorithm. This gives rise to the problem of how to mode
and verifyall such networks with a single model. Petri nets
offer adequate notations for this.

Each of the three case studies additionally introduces a new
modeling or analysis technique: Mutual exclusion can omely b
modeled with the notion dairness For the CFPP, we analyze
a solution to its synthesis problem. Agent networks useesyst
netschemata






Mutual Exclusion Chapter 20

By the 1960s, mutual exclusion was recognized as one of the
central problems in the organization of computer systers. |
arises whenever a resource can be accessed by only one of
many processes at any one time (for instance, a processor, a
printer or a communications device). While a process is using
the resource, it is in itsritical state. An agreement between

the processes has to guarantee that no two processes can be in
their critical states at the same time. We will introducehsuc

an agreement in which processes can only communicate via
asynchronous messages.

20.1 The Problem

With the system net in Fig. 3.2, we have already introduced

a model that guarantees the mutual exclusion of the two proaiing, b e waiting,
cesses andr: they never reside in their critical states simulta- O
neously. Amutex algorithmalso guarantees that each processar:
that wants to enter its critical state will eventually beeatol do
so. To specify this, we take another detailed look at theethre = c :
stateslocal, waiting and critical as well as the steps between

them:

(1) Statelocal: this is a state in which the process only works
with its own data.

(2) Step fromlocal to waiting: with this step a process an-
nounces its intention to use the limited resource. This step
can be executed spontaneously at any time. A mutex algo-
rithm cannot influence this step. A process i@t obliged
to execute this step. It may forever remaical. Thus,a is
a cold transition.



202 Mutual Exclusion

(3) Statewaiting: in this step the process expects the mutex al-
gorithm to permit it to enter itsritical state. The algorithm
may break downwvaiting into several intermediate states.

(4) Step fromwaiting to critical: @ mutex algorithm may require
certain preconditions to be met before a process can exe-
cute this step. Eventually, however, this step always has to
be possible: the mutex algorithm has to allow this step (and
its intermediate steps) not only for a few time intervald, bu
continuously until the process has reaclsetcal. At the
same time, the mutex algorithm can rely on the process to
actually execute this step (and its intermediate steps). We
will see that the algorithm in Fig. 3.2 does not guarantee
this.

(5) Statecritical: this is the state in which the process uses the
limited resource.

(6) Step fromcritical to local: the process may execute this
step spontaneously at any time. A mutex algorithm cannot
influence this step. A process abliged to execute this
step. It must not remaicritical forever.

20.2 Realizability

An elementary system net that models a mutex algorithm (i.e.
requirements (1)—(6) in the previous section) sensiblgidess
each of the three local states of each process with a 1-bdunde
place. (2) requires a cold transition frdotal to waiting for
each process. (6) requires a hot transition frwitical to local.
Figure 20.1 outlines these connections. The “cloud” inisa
the scope of the mutex algorithm.

We now assume an elementary system/Xednd derive a
contradiction. With this, we show that no elementary system
net can model a mutex algorithm.

Figure 20.2 shows a complete distributed run of the system
net V outlined in Fig. 20.1. In this run, the left procels&op
row) becomes critical infinitely often, while the right pexsr
(bottom row) remains local forever. (For our purposesould



20.3. Fairness Assumptions 203

waiting;

Figure 20.1: A few components of a mutex algorithm

become critical a finite number of times and then remain Ipcal
This run meets all six requirements from Section. 20.1.

Figure 20.3 shows an extension of this run: the right pro-
cess executed a step waiting. This is possible, because of
requirement (2). This run is also complete. However, it vio-
lates requirement (4). Therefor®,is not a mutex algorithm.

Figure 20.2: A valid run of a mutex algorithm

Figure 20.3: An invalid run

20.3 Fairness Assumptions

With the help of a new notation we can nevertheless construct
mutex algorithms. To do this, we take another detailed look
at the system neV in Fig. 3.2: it approximates a mutex al-
gorithm A, because each “intended” run dfis also a run of



204 Mutual Exclusion

N. However,N also has additional, “unintended” runs, for in-
stance (with a coherent renaming of the places and transjtio
the sequential run

ADE % ADF -2 BDF -2 cF -, ADF -& BDF 2, ..

This run enables transitianan infinite number of times, with-
out e ever actually occurring. This is (intuitively) an “unfair”
treatment ok. Likewise, all runs that tredt unfairly are “un-
intended”. This observation motivates the following deifom

of a sequential rum = Sy %5 S; -2 ... of an elementary
system netV and a transitiort of N: w ignores fairness fort

if ¢ is enabled in infinitely many markings;, but occurs only
a finite number of times i (for only a finite number of in-
dicesi: t = t;). The runw respects fairness far if w does
not ignore fairness far. A distributed runk respects fairness
for t if each sequential run ok (as described in Section 4.1)
respects fairness far To limit the set of runs of a system net
N to those runs respecting fairness for a transitiaime tran-
sition ¢ is labeled with %” in the graphical representation of
N.

Thus, the system néX in Fig. 3.2 describes a correct mutex

algorithm if the two transitionbs ande are labeled with &”.

Even without formally defining “implementability”, it is e
to see that fairness cannot be implemented. The observation
that fairness cannot be approximated with finite means makes
this particularly clear: each finite initial segment of an un
fair distributed run can be continued as a fair distributeal r
Whether or not fairness is correctly implemented could only
be decided “after an infinite amount of time.” The assumption
of fairness for transitions thus increases the expressvwep
of Petri nets.

However, a fairness requirement of the form “the transi-
tion ¢ eventually occurs” can be implemented more strictly
as ‘t occurs after at most cycles.” Such an algorithm reg-
ulates the flow of tokens ifit. For the left process this ap-
plies to transitiorb with the places8 andD. The algorithms
of both processes access the placdhus, they have to syn-
chronize themselves. Instead, we look for a mutex algorithm




20.4. Mutex with Autonomous Fairness 205

whose transitions that require fairness have their pre-aet
tirely within the respective processes.

20.4 Mutex with Autonomous Fairness

We construct an algorithm with eokenthat only one of the
processes can possess at any one time. The process pagsessin
the token can immediately execute its step froaiting to crit-

ical. The process not possessing the token can, wileng,

send a message to its partner to request the token. As soon as
the partner yields the token, the process will becamiteal.

A process possessing the token, when receiving such a teques
from its partner, will eventually yield the token.

local; waiting; waiting, local,
OO O+ ®
e available, requested; requested, available m
a clof>(O+] [ —(={ol] 9

activated, () ()activated,

F e

granted; granted,

critical, critical
Figure 20.4: Message-based mutex

Figure 20.4 replaces the “cloud” in Fig. 20.1 and shows the
algorithm. In the given initial marking, the left processins



206 Mutual Exclusion

possession of the tokemavailable;). Therefore, the left pro-
cess can immediately execute the step futing; to critical,

via transitiona. The right process does not possess the token,
but can, once it reachegiting,., execute the step txtivated.,

via transitionh, thereby sending a message to the left process
(requested;). The left process can respond to this message by
yielding the token via transition (yielded,), whereupon the
right process reachesitical, via transitionk. The label %"
(indicating “fairness”) in transitior rules out “unfair” behav-
ior. The left process would be unfair if it always ignored a
pending request from the right processq(ested,), i.e., the
choice between transitiorsandc was always decided in fa-
vor of a and thus to the disadvantageoof

20.5 The Scenarios of the Algorithm

For a systematic understanding of the algorithm, it is he faf
examine its scenarios. In fact, the algorithm is scenaaisel.
With the denotations in Fig. 20.5, the scenasjan Fig. 20.6
describes the cycle in which the owner of the token (i.e., in
Figs. 20.4 and 20.5 the left process) becomégal. The cor-
responding scenarif, (with a token initially inM instead of

N) is obvious.

Figure 20.7 shows the partial ruty. in which the right pro-
cess

e requests the token vig
e receives the token and beconeeiical via k

¢ and yields the token vip

The corresponding partial rud; (with a token initially inC
instead ofB) is obvious.

Figure 20.8 shows the partial rusy in which the left pro-
cess

e yields the token via,

e requests the token via



20.5. The Scenarios of the Algorithm 207

F A
O—F O
o B
(®
I
a c[o]
O
E Q

Figure 20.5: Renaming of places and transitions

e and receives the token and becomes criticabvia

The corresponding partial ruB, (with a token initially inM
instead ofN) is obvious.

The communication channeds K, H andJ of the algorithm
occur in bothA, and B, as labeled places. By merging those
places ofA, and B, that have the same label, a scenafg,
is generated in which at first the right and then the left pssce
becomes critical. Likewise, let the scenatipbe composed of
A; andB,.

Each distributed run of the system net in Fig. 20.5 consists
of instances of the four scenari6s S,, S; andS;. Thus, the
mutex algorithm is indeed scenario-based.



208 Mutual Exclusion

®
[a}—>(&)—+{e]
®—Ll—®

Figure 20.6: The scenarig)

Figure 20.7: The partial rud,

20.6 Correctness of the Algorithm

As for each mutex algorithm, we have to show that, next to the
actual mutual exclusion property, the six requirementsnfro
Section 20.1 are satisfied by the algorithm in Fig. 20.4. With
the exception of requirement (4) they are all obviously ful-
filled.

With the denotations in Fig. 20.5, the logical expression
—(E A Q) and thus the inequality

E+Q<1 (1)
describes the mutual exclusion property. Its validity dols
immediately by subtracting the canonical inequalitie® oK,
M andJ from the place invariant

E+B+K+Q+M+J=1

Next to the state property (1), the algorithm has to satisfy
the run property (4) from Section 20.1: in each run, each-wait
ing process will eventually become critical. In Fig. 20.6¢ f
the left process, this is the property

A — E. (2)



20.6. Correctness of the Algorithm 209

Figure 20.8: The partial rum;

We will show (2) by means of a proof graph, as introduced
in Chapter 16. Figure 20.9 shows this proof graph. The cor-
rectness of both proof graphs follows from the reading rule
and place invariants, with the exception of step 5 in Fig920.
HM — J. This step needs a rule exploiting the fairness as-
sumption for transitior). It prevents the infinite repetition of

the cycleM i Q M, M. Such a rule is described in [64].

m Fig.
b 20.10 ' d

1.A 2.ABt c 3.ACt 4.Hvt 5 HM: 6.J 7.JD+ 8.E
x /

Figure 20.9: Proof graph fod — E

N

1.H 2.HK 3.HKP ! 4HQ'! 5.HM

S

Figure 20.10: Proof graph fdd — HM



210 Mutual Exclusion

Exercises

1. Show the correctness of the proof graphs in Figs. 20.9 ari02

2. Construct the scenarigs andS; described in Section 20.5.

Further Reading

A series of solutions to the mutual exclusion problem oadiinformulated in programming
languages were also reproduced as Petri nets [64]. Thecppst® Chapter 4 discusses some
general problems of such Petri net reproductions. Kindher Walter show in [40] that each
mutex algorithm for autonomous processes requires sonredbfairness assumption.



20.6. Correctness of the Algorithm 211

The Problem of Mutual Exclusion

The problem of mutual exclusion occurs in many variatiortsose variations differ particularly
with respect to:

the number of processes and the topology of their network@igapter 20 introduced a
solution fortwo processes, Section 9.3 for five processes (“philosophelfsiye call two
processeseighborsif they share a limited resource (“chopstick”), then theghdior rela-
tion of the five philosophers forms a circle. In general, ¢hexists an arbitrary number of
processes and very different patterns of the neighboiwalafpart from circles, other com-
mon patterns are stars, grids, trees ardimensional cubes (“hypercubes”). Furthermore,
the number of simultaneous users of a limited resource is@#ssarily two.

the assigning of the limited resource: so far, we have ongnsxamples in which each
limited resource has a predefined set of users. This is natyslthe case. For instance, it
may be irrelevant to which of two available printers a precgsnds its documents.

the communication between the processes: in the solutiéigin20.4, the processes com-
municate via messages. In other solutions, they accessr@dstariable or execute joint
activities.

the influence of a global instance: an example of such anriosts an operating system
managing the processes and resources. In contrast, th®sauChapter 20 uses homoge-
neous processes, which are not controlled by any globannst

The formulations of and solutions to the different variasftthe problem depend heavily on the
modeling technique employed. Shared variables are conynma@d. Thereby, each variable
is owned by a process that can update it. Other processes mhayead the variable. The
necessary fairness assumptions are integrated into thelmgdhnguage itself: an unbounded
sequence of reading operations of a variablean be interrupted by the variable’s owner in
order to updater. During the modeling of such variables with Petri nets (cf. aptler 4's
postscript “Read and Write vs. Give and Take”) these fairnessraptions become obvious. In
Lamport’s “Bakery Algorithm”, the fairness assumption isanporated into a display panel of
which all processes require an unimpeded view.

In practice, such fairness assumptions can often be negtetlong-lasting” accesses to

limited resources can be organized by “short” accesses&r oesources.






Asynchronous Hardware Chapter 21

This case study describes the systematic constructioryaf as
chronous hardware. It uses the example of an extremely dy-
namic architecture of a processor that adapts to the current
availability of data packets and functions, as well as thg-va
ing durations of individual calculation steps.

21.1 The Counterflow Pipeline Proces-
sor (CFPP): The Problem

The Sprout counterflow pipeline processor is a well-known,
complex, asynchronous hardware architecture. We model the
abstract principle of its behavior on the level of its data an
control flows: a stream, ... d, of data packets and a stream
fi ... fm Ofinstructions both reach a processgarThe proces-

sor then sequentially applies all instructiofis. . . , f,, to each
data packet/; and then outputs the resulting data packets

i =def fm (... f2(f1(di))...)

fori = 1,...,n in sequence. AfteP has processed a pair of
data and instruction streams, it becomes ready for new pair.

In each case, the two streams may be of different lengths.
The data packets and instructions reatasynchronously, not
in predetermined time intervals. The time it takes to apfly
to the data packet

fica(o fa(fildi)) - )

is unknown for alli andj. The processor should work as fast
as possible, that is, it should execute as many operations as
possible in parallel. Atthe same time, it should react asidlgx

as possible to different speeds and different lengths af aiadl



214

Asynchronous Hardware

instruction streams, as well as different durations ofuciton
calculations.

21.2 The Solution Idea

To solve this problem, the CFPP architecture utilizes a se-
qguenceP = M, ... M, of consecutively linked modules, as
outlined in Fig. 21.1. The data packets ..., d, flow from

dp ...do dq €n ... €2 e

> e e e

fifg fm —— e S A
112 ... fm M Mo M 1f2 ... fm

Figure 21.1: Assembly of the CFPP from modulds

the left, that is, viaM;, into P. The computed data packets
e, ..., e, leave P on the right, viaM,. Vice versa, the in-
structions flow from the right intd and leaveP via M;. All
modules work according to the same pattern. A modaje
can receive data packets from its left neighbr, and give
out instructions to it. To its right neighba, ., it can give
out data packets and receive instructions from it. The mesdul
communicate synchronousli; can give out a data packet to
M, asM, receives it. LikewiseM; gives out an instruction
to M,;_; asM;_; receives it.

Figure 21.2 shows the behavior of an “inner” modulg: =
2,...,k — 1) as a state automaton. Initially}; can receive a
data packetl (from M;_;) and an instructiorf (from M;. ).
WhenM; has received both —in arbitrary order — it is ready for
computation and appligdo d. M; can then — in arbitrary order
— give out the newly computed data packet and the instruction
to M; 1 andM,_q, respectively. M; does not store anything,
then reorganizes itself and returns to its initial state.

Of particular interest are the two states (top and bottom in
Fig. 21.2) in whichM; stores either only a data packet or only
an instruction:M; can give out the unprocessed data packet to
M, 1, or the unused instruction 1, _;.



21.3. The Synthesis Problem for the CFPP 215

with data packet,
without instruction
forward data receive data receive forward
packet packet instruction instruction

: reorga- ready for new compute with computed
Wlt'rtﬁUt td'atat pai:.ket,_—9> data packet and read;i f?" _COMPE  data packet and
without instruction nize new instrution computation instruction

forward receive receive data forward
instruction instruction packet data packet
without data packet, -

with instruction

Figure 21.2: A CFPP module as state automaton

The moduleM; on the left edge of the CFPP architecture es-
sentially behaves like an inner module. However, it onlyegiv
out an instructiorf; to the environment afteff has been ap-
plied to the last data packef,. Likewise, the modulé/, on
the right edge only gives out a data packgto the environ-
ment after the last instructidf, has been applied &. We do
not explicitly model those two modules.

An architecture withk modules can process a stream. . .,
d,, of data packets and a stre&nm. . . ,f,, of instructions if and
only if n andm are not both greater than In that case, the
data packets or instructions can all be stored simultamgous
inside the modules. A CFPP can compensate for the different
durations of instructions only # is greater than either or m.

21.3 The Synthesis Problem for the CFPP

The state automaton in Fig. 21.2 uses six different actioos,
of which can occur in two states each. We now ask for the pre-,



Asynchronous Hardware

e

f
6 — 1

;
A

d

A={2,45}, B={345)},
C={136} D={126}
FE={1,35}) F={246},
G={512}, H={346}

e

2 =
/N
4—C>5
\/
3 -

Figure 21.3: The eight minimal regions . .., H of a CFPP module

post- and side conditions of their occurrences and thushfor t
local states that organize a CFPP module. For this purpose,
we solve the synthesis problem for the state automaton (cf.
Chapter 7). Using the denotations in Fig. 21.3, its eight min-
imal regions generate the elementary systemMethown in

Fig. 21.4. Its marking graph is isomorphic to the state aatom
tonin Fig. 21.2. Thereforgy solves the synthesis problem for
the CFPP.

Figure 21.4: The solution to the synthesis problem for th®EF



21.4. Structural Simplification of a Module

217

21.4 Structural Simplification of a Mod-
ule

The structure of the system natin Fig. 21.4 can be simpli-
fied. At first, we derive for this:

A+H+E+D=2 place invariant
E+F=1 place invariant
—B —D = —1 place invariant

—2E <0  canonical inequality oE

Their addition yields:
A+F+H-B<2.

From this follows for each reachable marking that maxks
andH, that it also marks®. This renders the loop betweén
andc redundant.

The argument about the loop betwegandf is analogous.
Thus, Fig. 21.5 shows the final version of a CFPP module.

Figure 21.5: Final version of a module



218

Asynchronous Hardware

21.5 The Model of the CFPP

To form the CFPPP as a sequenci; ...M; of modules,k
instances of the module in Fig. 21.5 have to be combined. Itis
rather simple to combine a modulg with its right neighbor
M;.1: the transitiore of M; is merged with the transitioa of
M;,; andb of M; with d of M, ;. Figure 21.6 outlines this
construction.

Figure 21.6: Combination of moduléd; and M, of the CFPP

21.6 Analysis of the Model

For a better understanding of the model in Fig. 21.5, the inode
in Fig. 21.7 describes the intuitive meanings of some of its
components. An intuitive description of the meanings of the
placesE, F, G andH is left to the reader.

The arcs labeled with the variabtelescribe the path of the
data packets through the processor. Likewise, the arctethbe
with y describe the path of the instructions. The invari@nt
C = linFig. 21.5 guarantees that data packets and instructions
cannot overtake each other. Accordindgyy D = 1 holds for
instructions: a modul&1, indeed, never stores more than one
data packed and never more than one instructioif M; stores
both, the module computes, i.é.is applied tod. From that
follows for each reachable marking in Fig. 21.5: if a data
packet has been received, that is transitidras occurred, i.e.,
M(A) = M(F) = 1, and if an instruction has been received, that



21.6. Analysis of the Model

219

without data packet

forward
data packet

receive
data packet

with data packet .

compute

E' )G _—
] '
fi d o i
o on oot —{"Jjocae
y (O

instruction
with instruction f(x)

Figure 21.7: Module of the CFPP

is, transitionb has occurred, i.eM(B) = M(H) = 1, thenc is
the only enabled transition. Because of the invaridmsC =
L,E+F=1,G+H=1andB+ D = 1, the place<, E, G,
D are not marked and thus the transitiengl, e, b, f are not

enabled.

If M; stores a data packdtandM;,; an instructiorf, both
of the shared transitions are enabled. In that case, it isleléc

nondeterministically whethew; or M;,; computeg(d).



220 Asynchronous Hardware

Exercises

1. Describe the intuitive meanings of the plage&, G andH in Fig. 21.7.

* 2. Construct the model of the module in Fig. 21.5 for two néighng modulesv; andM,, ;.
Let M; store a data packet, but no instruction, andMget; store an instruction, but no data
packet. Show tha¥l; andM;,, share two transitions that are in conflict with each other if
both are enabled.

Further Reading

The concept of the Sprout CFPP and the modeling idea of thigtehare described by Yakovlev
and Koelmans in [81]. Problems with the synthesis of disteld systems from a sequential
description of their behavior often occur in hardware des&jgorithms for their solution have
therefore been integrated into tRetrifytool [13]. Petri nets are successfully used as a modeling
tool for hardware systems.



Network Algorithms Chapter 22

Nowadays, computers often function as nodes of a network. In
such a network, two nodes can be connected to each other by
acommunications channgla which they can exchange mes-
sages. Such nodes areighbors

Figure 22.1 shows two networkd; andN,, with the nodes
a, 3,.... Both are connected. In contrastAq, the network
N> is acyclic no sequence of edges forms a cycle.

Nli Ngl
Q/B\S G\YS S
\Y/ B/

Figure 22.1: Two agent networks

In a network, there exist some typical tasks: a node sends
a message over the network to all other nodes, the nodes syn-
chronize themselves (as far as possible) in cycles or tfahre
mutual agreements. In this chapter, we discuss solutions to
such tasks. Other typical tasks relate to the organizatfon o
limited resources, the distribution of tasks or the reatita-
tion after a critical error.

Such tasks are not easy to solve, because each node gener-
ally only has a small number of neighbors. No node “knows”
the entire network. Furthermore, a solution is supposed to
work not only for a specific network, but for infinitely many,
for instance, for all connected or for all acyclic networks.



222

Network Algorithms

22.1 Some Conventions for the Repre-
sentation of Network Algorithms

We model algorithms for the solution of the types of tasks de-
scribed above as Petri nethemata Such a schema is a net
structure, labeled witsymbolsthat can banterpreted Each
sensible interpretation generates its own concrete, fagent
network.

We typically use the symbal to denote the set of agents in
a network. The neighbors of a network are given as a relation

N CUXxU.

A tuple (u,v) € N thus describes a communications chan-
nel. We assume symmetrical communications channels, which
means thatu, v) € N implies(v,u) € N. In the networkV,
in Fig. 22.1,U = [«a, 8,7,d] andN = [(«, 8), (B, @), (o, ),
(7, @), (8,6), (6, B), (8.7), (v, B), (v, 6), (8, )).1

We also use a tuple:, v) to denote a message fromto w.
In general, a message is always of the form

(recipient sendey.

For an agent;, let N (u) be the set of messages u) to all its
neighbors and letN (u) be the set of messagés, v) fromall
its neighbors. Thus, in the networkV; in Fig. 22.1

N(e) = [(8, @), (v, )] and (1)

N(a) = [(a, B), (a,7)]. (2)
With these conventions, we first explain the idea of Petri net
schemata, using the example of taeho Algorithm

22.2 The Echo Algorithm

For a connected network with a distinguished “initiator'deo
i, this algorithm organizes the distribution of a messagmfro

IWe denotd/ and N as well as several other sets as multisets here, in
order to stay consistent with the arc labelings of the nets.



22.2. The Echo Algorithm 223

the initiator to all other nodes of the network. The initiato
terminates when all nodes have confirmed the receipt of the
message.

o before start a o waiting b a terminated

N(a)

messages from a . messages toa
Figure 22.2: The behavior of the initiatar

As an example, letv be the initiator of the networkv;
in Fig. 22.1. Figure 22.2 shows its behavior: the transition
a sends messages framto the neighborg and~. According
to (1), this generates the tokef1$ «) and (v, «) in the place
“messages from «.” When later the placeressages to o”
has received the tokeris, ) and(«, v) (cf. (2)), transitionb
can occur. In this representatiotiandN are merely symbols.
They first have to be interpreted according to the speci@inati
in Section 22.1 before one can talk about markings.

A non-initiator node becomes active as soon as it receives
its first message. It then chooses one of its neighbors as its
“pivot neighbor.” Figure 22.3 shows the behavior of the node
v (seeN; in Fig. 22.1) witha as its pivot neighbor: the transi-
tion c sends messages to the two other neighpbaxadd of v
by generating the set of tokeN$y) — (o, v) = [(«, ), (8, 7),
(0,7)] = (a,y) = [(B,7), (8,7)] in the place fessages from
«.” Then~ waits, with its pivot messaggy, «) in the place
“~ waiting with «,” for messages from the two other neigh-
bors, that is, for tokens in the sBi(v)— (v,a) = [(v, ),

(7, 8), (7,9)] = (v.@) = [(7,B), (7,9)]. The occurrence of
then removes all tokens from the placeswaiting with o” and
“messages to v,” and terminates.

Instead ofy, the nodey can also choosg as its pivot neigh-
bor if the messagéy, ) reaches the placenfessages to ~.”

In principle, each neighbor of a node can play the role of the
pivot neighbor.

The net in Fig. 22.4 models this possibility by means of the
variabley. The current choice of a pivot neighbor determines



224

Network Algorithms

messages to y messages from vy

v before start v waiting with a d v terminated

Figure 22.3: The behavior of with the pivot neighbory

messages to y messages from vy

Y (ry) (ny) q ¥
v before start y waiting with y y terminated

Figure 22.4: The behavior of a non-initiator agent

the value ofy and thus the mode of transiti@n(cf. Sect. 2.6).

Each non-initiator node behaves according to the pattern
given in Fig. 22.4 for the node. The net in Fig. 22.5 models
this by making two modifications to the net in Fig. 22.4: first,
the concrete nodeis replaced with the variable Second, the
initial marking~ of the place % before start” is replaced with
the symbolU’. With this, we model the behavior of arbitrary
networks.U denotes the set of all nodes add= U — i the set
of all nodes except the initiator. Thus, fof in Fig. 22.1, the
following holds:

U= [a767776]1 = a, U/ = [67776]

An agentu with only one neighbov (for instanceq, 5 or
e in Ny in Fig. 22.1) can only chooseas its pivot neighbor.
In this case, the transitionin Fig. 22.5 only has the mode in
which x = u andy = v. The arc labell/(x) — (y,x) is then
reduced toN(u) — (v,u) = (v,u) — (v,u) = [ ]. The transition
c thus does not send any message. Accordinglso does
not expect a message.

For the final model of the Echo Algorithm, the four places



22.2. The Echo Algorithm 225

for sent, but not yet received messages in Figs. 22.2 and 22.5
are combined into aingleplaceD in Fig. 22.6. Furthermore,
the agenty is replaced with the symbafor the initiator.

messages to X messages from x

X (xy) (xy) X
x before start x waiting with y x terminated

Figure 22.5: The behavior of the non-initiator nodes

Figure 22.6 does not show an example of system nets as
they have been introduced in Sect. 2.7. To begin wijth),
N andN are merely symbols. To describe a concrete agent
network A, as explained in Sect. 22.1, the symbbhs to be
interpreted as the initiatot)’ as the set of all other agents of
A, andN as well asN as functions for the generation of the
network’s messages. Thus, Fig. 22.6 formschemaof an
algorithm for anarbitrary agent network.

Figure 22.6: The Echo Algorithm

On this schema level, we can now show the correctness of
the algorithm for each concrete connected netwdrk Two
properties characterize the correctness of the algorithm:

1. The state property “If the initiator terminates, all athedes



226 Network Algorithms

have been informed”:

N E Ci— GU.

2. The run property “Starting from the initial state, thetien
tor terminates”:

N E=AiANEU — Cii.

The properties can be proved with the help of three equations
A+B+C=i,

E+ pri(F) + G = U and

N(A) + N(C) + D+ N(E) + F + F + N(G) = N(U).

In the second equatiopsy; denotes the projection onto the first
component. The validity iV can be easily asserted by means
of place invariants.

22.3 Synchronization in Acyclic Networks

Network algorithms often operate in cycles: each node-alter
nates between the states “active” and “passive” and stacts e
successive cycle with “active.” We describe an algorithat th
synchronizes the nodes as tightly as possible: simultaigou
active nodes are in the same cycle. Initially, each nodetrgeac
in theOth cycle.

As in the Echo Algorithm, each nodehas a pivot neigh-
borv in each cycle. Here, howevar,initially does not expect
a message from, but from each of th@ther neighbors. As
an example, Fig. 22.7 shows the second cycle of the node
in the networkN; in Fig. 22.1, with$ as its pivot neighbor.
The transitiora is enabled with the token sB{v) — (v,d) =
(v, @), (v, B), (v, 0)] = (v,6) = [(v,),(7,B)]. The occur-
rence ofa sends the message, /) from ¢ to its current pivot
neighbory. In the stateassive, v waits for a messagey, J)
from 0 and sends messages to its two other neighb@sd/.



22.3. Synchronization in Acyclic Networks

227

active in active in
cycle 0 a passive b cycle 1
0 A

N(v) - (v N@) - (6.7)

messages to y messages from y

Figure 22.7: The cycle of the nodewith the pivot neighbof

active in active in
cycle 0 a passive b cycle 1
0

Figure 22.8: First cycle of the nodewith an arbitrary pivot neighbor

To express that, in principle, each neighbotyafan play the
role of the pivot neighbor, we replace the nadm Fig. 22.7
with the variabley (Fig. 22.8).

Each node behaves according to the pattern shown for the
node~ in Fig. 22.8. Analogously to the step from Fig. 22.4 to
Fig. 22.5 for the Echo Algorithm, Fig. 22.8 is now the basis fo
Fig. 22.9: in the arc labelings, the nogeas replaced with the
variablex and the constant cycle numbemwith the variable
i. In the place active in cycle i,” the node~ with the cycle
number0 is replaced with the set of nodésof an arbitrary
network. Thereby, each nodelinhas the cycle number?

active in active in
cyclei a passive b cycle i+1
(X, . .

(x,i+1 ‘

Figure 22.9:ith cycle of an agent

2In analogy to the Cartesian product, Igt,...,a,] x [b] =def
[(a1,b),...,(an,b)].



228 Network Algorithms

In the place active in cycle i,” a nodeu with only a single
neighbow enables the transiticanin the modex=u without any
pending messages to Thus, those nodes start a new cycle.
Our algorithm is correct foacyclig, finite networks. Each such
network has at least two nodes with only one neighbor each.

We develop Fig. 22.10 from Fig. 22.9 by

e combining the placesttive in cycle i” and “active in cycle
i+1” into a single placea\,

e combining the sent, but not yet received messages into a
single places,

e renaming the placepassive” to C.

Figure 22.10: Synchronization in acyclic networks

Technically, a cycle of all nodes together forms a scenafio (
Chap. 5) for markingg/ with pr,(M(A)) = U. Three proper-
ties characterize the correctness of the algorithm in RA¢L@

1. the state property “two active nodes are in the same cycle”
A.(u,n) AA.(v,m) — n =m,

2. the state property “the cycle number of a passive and an
active node differs by at most:

A.(u,n) AC.(v,m) — |n—m| <1,



22.3. Synchronization in Acyclic Networks 229

3. the run property “if the agenthas reached it&h cycle, it
will eventually reach théi + 1)th cycle as well”:

A.(u, i) — A(u, i+ 1).

The properties can be proved with the help of three equations
1. Each node is either active or passive:
pri(A) +pri(C) = U,

wherepr; maps a tuple to its first component, iy ((u, 7)) =
wandpry ([(ur, 1), ..., (Un, in)]) = [U1, ..., Uy

2. From and to passive components, messages are underway:

B+ B+ N(pri(C)) + N(pri(C)) = 2(pr12(C) + pr2.1(C)),

wherepr »(a,b,¢) = prao(b,a,c) = (a,b) and(a,b) =
(b, a).

3. The third equation covers all the places and includes the
cycle number. Furthermore, it uses four functions that map
each agent and each number to a multiset of node pairs:

o(u, n) =ger 2n - N(u),
alu,n) =gef 2n - N(u),
B(u,n) =det 2(n + 1) - N(u),
B(u,n) =ger2(n + 1) - N(u).
This yields the following equation:

a(A) + B+ B(pr13(C)) = @(A) + B + B(pr1.3(C)).

As before with the Echo Algorithm, these equations are de-
rived from place invariants.



230

Network Algorithms

22.4 Consensus in the Network

The nodes of a network often want to reach a mutual agree-
ment. To do this, each node can send its neighbors a request
and respond to requests from its neighbors. The algorithm
terminates when all nodes have reached an agreement. To
this end, each message contains not only the recipient &nd th
sender, but also a “tag” with “?” or “1” that indicates whethe
the message is a request of the sender to the recipient or a
response of the sender to a previous request of the recipient
Thus, a message is of the form

(recipient, sender, ?) or (recipient, sender, !).

Let Q(u) denote the set of all requestsy,?) of a nodeu
to its neighborsy, and letR(u) denote the set of all responses
(u,v,) from its neighbors to u.

For the nodey of the networkN; in Fig. 22.1, for instance,
the following holds:

Q(a) = [(8,a,?), (v, 7)] and )
R(ar) = [(a, 8,1), (e, 7, D] (4)

Figure 22.11 shows how assents to current agreements or
sends new requests. If all neighborscohave responded to
its requests (placedis informed”) and « is still negotiating,
there exist two possibilities: eitheragrees (transition) or «
sends new requestd«) (see (3)) via the placaéquests from
o” to its neighborss and~ (transitionc) and then waits until
both neighbors have responded with tok&ta) (see (4)) in
the place fesponses to a.”

Figure 22.12 shows how responds to requests from its
neighbors: ifa has already agreed to the present agreement
and then receives a new request, it will again become ready to
negotiate (transitiob). If « is still negotiating anyway, it will
stay in this state (transitios).

From Figs. 22.11 and 22.12, we derive the Consensus Al-
gorithm shown in Fig. 22.13 by

e combining the two figures,



22.4. Consensus in the Network

231

o still negotiating

requests
from a
a
responses ~olis @
to a informed

o has agreed

Figure 22.11: Noder agrees or sends new requests and expects responses

a still negotiating

responses o

from a to B

request from f3 to a

Figure 22.12: Nodex re-
ceives arequest fromand
a has agreed responds to it



232 Network Algorithms

e expanding the behavior to include all nodedlinthereby
replacing the constait with the variablex,

e combining the four places with sent, but not yet received
requests and responses intsiagleplaceD.

B

Figure 22.13: The Consensus Algorithm

Three properties characterize the correctness of theigdgor
in Fig. 22.13:

1. the state property “if the nodehas agreed, thea is in-
formed”:

B.u — C.u,

2. the state property “if all nodes have agreed, then no more
messages are underway”:

BU—D=1[],

3. the run property “each nodealways becomes informed
again”™
true — C.u.

The properties can be proved with the help of two valid equa-
tions and one inequality:



22.4. Consensus in the Network 233

1. Each node is still negotiating or has agreed:

A+B=U.

2. Each node is either informed, or messages from or to it are
underway:
Q(C) + R(C) + D + pra13(D) = Q(U) + R(U),
whereprs 1 3(a, b, ¢) =qet (b, a, c).
3. Each node is still negotiating or is informed:

A+C=>U.

As with the previous two algorithms, the two equations are
directly derived from place invariants. The inequalityldéas
from an initially marked trap.



234 Network Algorithms

Exercises

1. For the Echo Algorithm in Fig. 22.6: construct its matrindahe initial marking in vector
notation and find three place invariants that prove the éopusat the end of Section 22.2.

2. For the Consensus Algorithm in Fig. 22.13:
(a) Construct its matrix and the initial marking in vector aigan and find two place
invariants with the carrier§A, B} and{C, D}, respectively.
(b) Show thaf{A,C} is a trap.

*(c) From the place invariants and the trap, derive the tipre@erties discussed in Sec-
tion 22.4.

Further Reading

A network algorithm describes the behavior of a whole cldssedworks. With a (generic)
system net as in Chap. 2, it is possible to describe the bahaf/iat most, a single network.
Therefore, we have usatet schemat&ere. Further network algorithms modeled as Petri net
schemata and further distributed algorithms in generadlaseribed in [64].



Part IV

Conclusion






Closing Remarks

23.1 A Brief History of Petri Nets

In the 1960s, Carl Adam Petri's proposals for the modelingistréte, asynchronous systems
were too advanced for practical application and the “wrotagic for the theory at that time.
Accordingly, the responses were limited at first, but attléfas MAC project at MIT picked up
Petri nets in the late 1960s. In the 1970s, Petri nets weea af$ed (inappropriately) to char-
acterize formal languages. The reachability problem wag tegarded as the central challenge
in this area. In the early 1980s, “colored” tokens signiftgaimcreased the expressive power
of Petri nets, and modeling tools enhanced their applitgbi larger projects. At the same
time, Petri nets entered into a fierce competition with otinedeling techniques. The gen-
eral interest in modeling techniques, especially graptunas, which had been growing since
the 1990s, eventually established Petri nets as an impartartribution to computer science.
Since 1979, an annual conference, summer schools, workstmabanthologies on specific top-
ics have come on the scene. The number of publications onrfeédris in the five-digit range.
Historical overviews can be found in [69] and [60].

23.2 Properties of the Elementary Formalisms of Petri Nets

Every technique for the modeling of discrete, dynamic systdescribestatesandsteps Apart
from this, their elementary formalisms can differ fundamaély. State charts, for instance,
use hierarchically and parallelly composed state compsnédtrocess algebras emphasize the
binary synchronization of actions in steps and the indedbvildup of models. Petri nets use
multisets as state components. Stepsliaear, local andreversible For Petri net schemata
(Chapter 22), they are alsmiversal The following explains what this means in detail, what
advantages it brings and which other modeling techniquésafia work according to similar
principles.

Multisets are an appropriate data structure: a series oefimggtechniques for discrete sys-
tems with asynchronous components use multisets as theiagr data structure [14], among
them LINDA, the Chemical Abstract Machinend DNA Computing Figuratively speaking,
there exists a “pot” and processes can add elements to ara/eetinem from it. This pot
metaphor exists in many variants. A Petri net models sucts"@s places.

Chap



238

The reason for choosing multisets instead of regular seibv®us: to put an element into
a “pot,” it would otherwise be necessary to search the whotdqr another occurrence of the
element. This would prevent the mutually independent ({abyonous”) access of multiple
processes to such a pot.

Steps are “linear”: Lef\/; LA M, be a step. Thed/, + M BN My + M is also a step
for each markingV/. In particular, with the marking - M, the transitiont can occur at least
n times: steps behave inlaear fashion. All modeling techniques that use multisets ag thei
elementary data structure also use linear steps. The ilyedirsteps is also essential for the
calculi of place and transition invariants.

Transitions have local causes and effects. The preconditar the occurrence of a transition
t are entirely located if¢. Its effect pertains tot and¢®. This locality oft immensely simplifies
the intuitive understanding.

Other modeling techniques, for instance, automata andepsoalgebras, usactionsto
model elementary steps. In such a model, one and the saroa a@y be noted down multiple
times and in different contexts. In the automaton in Fig, 7ot instance, the actionsvitch
light off” occurs in the labelings afwo arcs. (In the corresponding Petri net in Fig. 7.2, there
exists only a single transitiorsiitch light off.”) To fully understand an actiohin an automaton
or process expression, it is necessary to take into accachtand every occurrence ofthe
description of the meaning ofsangleaction is scattered across the entire model. This problem
is even more evident in structured or hierarchical modet@upniques, such as state charts or
message sequence charts (MSC).

For large systems in particular, the locality of transitas of great value. Exponentially
growing state spaces stand in contrast to transitions, evhos and post-sets generally do not
grow significantly, even in larger systems. Thus, the maifiof a large systenV is sparse.
Therefore, finding place and transition invariants is oftehmuch more complex than in small
systems.

Locality offers additional structural arguments. Thishe treason that traps, cotraps and
free-choice structures are possible in Petri nets andliegitdan be exploited in their analysis.
The occurrences of two locally independent transitioaadu (i.e. *t N *u = ()) are orderless
in a distributed run. Locality is thus the basis for disttdmliruns and thus for scenarios and
ultimately also for thestubborn setmethod of temporal logic, which increases efficiency.

Steps are “reversible”: in each modeling technique, stégsedorm M —L5 M’ are formed
such that)M’ can be derived from\/ andt¢. A step isreversibleif also /M can be derived
from M’ andt. A step of a Petri net is always reversibl®f = M’ — t. In contrast to this,
value assignments are generally not reversible. An exawiptbis is the value assignment
x := 0. Intuitively speaking, given information can be returniedt, deleted information cannot
be brought back. The reversibility of steps is ultimatelg teason that place and transition
invariants are so powerful.



239

Petri net schemata are uninterpreted: the network algosiih Chapter 22 are formulated as
Petri net schematalhey contain the symbotsu, N and N, which first have to be interpreted.
Only then is a Petri net generated. Consideghgnterpretations of symbols to be sets or func-
tions is well-known from predicate logic. This techniqueeidremely powerful and flexible.
In computer science, this idea is used for describing ssatictures in algebraic specifications
and dynamic steps, especially in abstract state machir@sijA

23.3 Speculative Questions

In his presentation at the 26th annual meeting of the Intemmal Conference on Applications
and Theory of Petri Nets in Miami in June 2005, Carl Adam Petiged the diversity of theory
construction and areas of application that had been aah&wuee his dissertation. At the same
time, he urged people to pose more fundamental questions.

In [59], Petri himself formulated a few such proposals andjis presentations over recent
years, emphasized physics as the basis for his motivaties.cdhcepts always had the goal
to formulate information processing independently frora turrent technological standards.
In fact, it is likely that hitherto unknown or unused atomiceven biological effects will be
employed for future calculations or conceived of as datagssing units.

How can Petri nets contribute to the explanation or use di sffects? Let us first consider
an analogy from chemistry and physics: Among the fundanémsaghts of these areas are
laws of conservation. If a system does not exchange mattenemy with its environment,
both can be transformed in various ways in the system’siorteFhe sum total, however, stays
the same. Nothing is lost and nothing is added. The — not venjtive — terms of matter and
energy are defined in exactly such a way that these consamJatvs hold.

Does there exist a corresponding term for a science of irddam transformation? What is
conserved in the interior of a dynamic system that does ndtamge any information with its
environment? Currently used terms for “information” are iolgly not very helpful here.

Petri nets may help to coin an appropriate term: their eléamngrdynamic concept ige-
versible If the marking)/’ and the transition are known for a step/ — M, then the initial
marking M can be back-calculated. For a classic value assignmenndtance := 1, the
original value ofr cannot be back-calculated. Reversibility in dynamic preessupports fun-
damental invariance from which, already in 1967, Petri toie$ed a reversible propositional
logic [57].

The insight that the partial independence of componentsiglety structures a system is
equally important: the causal partial order of events iggalf objective and does not need an
“observer,” who forces events into a “temporal” order.

It is currently not foreseeable how far-reaching these ahére of Petri’s proposals are.



240

With the currently available concepts of Petri nets, we &ife & build better systems. At the
same time, we should be prepared for surprises in the future.

23.4 Petri Nets in Software Engineering

Because software and computer-integrated systems are ntbnea@e often abstractly modeled
before their actual implementation, the role of Petri netang as they successfully combine
intuition and precision during the planning and configunatof IT products. The techniques
introduced in this book are sufficient to represent caugatrielations in the control flow and

simple structures in the data space. However, not all inapbrspects of complex software
models can be expressed in this way. There are two groupspetisthat have not been
covered here: the first group is temporal and stochasticrélégions of actions, which need to
be expressible. Petri nets were extended very early to dbothese aspects to be modeled.
Thus, a series of variants were created and many softwaledopport these aspects. [4], [41]
and [7] further address these questions.

The second group of aspects that were not covered in thisredeaties to the appropriate han-
dling of large system models. Such models have to be systematicaityposedrom smaller
ones. Basic ideas for this have been discussed in Chapter 8ll¥Emuoportant is theefinement
of components. In the simplest case, a transitireplaced with an interface net whose in-
terface consists of the places®inU t*. An overview of the different variants of refinement and
composition can be found in [30].

Large systems are nowadays designed in a systematic pracbss$ by software tools. There
is a series of such design procedures that are based on &striline most universal and most
common approach is based on “colored nets” [38], a specianeof system nets.

Numerous other proposals pick up the idea of incorporatiegbncept of object orientation
into Petri nets. [51] provides an overview.

With activity diagrams, the currently dominant “Univerddbdeling Language” (UML)

adopted some ideas of Petri nets. A more fundamental cdondxgttween Petri nets and UML
is described in [74].

23.5 Reference to Other System Models and Analysis Tech-
niques
Next to the usual automaton models, particularly finite ezta with their graph representa-

tion, there are also some models that, like Petri nets, m®pome elementary formalisms and
thus specify a class of systems. The formalisms of Petri atsdescribed in this book and



241

summarized in Section 23.3.

Process algebras are noted for their inductive design adftitus on pairwise “handshake
synchronization” of actions. [9] tries to combine the adeges of both system models.

Abstract State Machines (ASM) pursue the idea of leavingrttegpretations of all data and
function symbols in an algorithm’s specification comphet@ben. This results in a concept of
algorithms that is more general than usual [32]. The conaEpétri net schemata in Chapter 22
is based on this idea.

For the analysis methods presented in Part Il, the questitie complexity of their algorith-
mic solutions arises. This text addressed these issueganaly. There are numerous studies

in the literature that sometimes bring up very fundameniaktjons of complexity theory. [22]
provides an overview.

23.6 Other Introductory Texts

The most recent comprehensive introduction to Petri netswydten by a team of authors after
theThird Advanced Course on Petri Nats1998 [70]. Compared to that text, this one is shorter
and focuses on fundamental terms, accurate analysis tpesand case studies. At the same
time, it contains a few new items:

e As far as possible, elementary and generic systems netoteated separately.

State properties written as equations and inequalitiesegrarated from the question of how
to prove their correctness.

Scenario-based runs and run properties are emphasized.

Hot and cold transitions are distinguished.

In some instances, new terminology is used.

In particular, the term “system net” is new for an initiallyanked net structure. The prefix
“elementary” denotes the special case of “black” tokens fEnm “Petri net” is used to denote
the entire field of study. All this is meant to emphasize theaathges of Petri nets and to
intuitively, conceptually and terminologically simplitiieir comprehensibility.

The literature on Petri nets is vast and steadily growinge ®hline platformhtt p: //
www. i nf or mat i k. uni - hanbur g. de/ TA / @ - Fachgr uppe0. 0. 1/ maintained by
the University of Hamburg, Germany is an excellent choiceafointroduction.






Formal Framework Appe

Here we present a concise compilation of tidultisets (D Seuct. 2_3)
formal framework that is used throughout this
book. For easy navigation and cross-referen&gfinition 3.

the relevant terms are highlighted here and also . _
in the margin of each chapter. (i) ForasetU, a mappinge : U — Nis a
multiset over/ . M(U) denotes the set

of all multisets ovel/. We write M for
Components of a Net I Sect. 2.2) M(U) if Uisirrelevant or obvious from

context.
Definition 1. Let P and T be sets and Iét C

(PxT)U(T x P). (i) a € M is finite iff a(u) # 0 for only
finitely manyu € U.

) g :Tdef (éD’ ? F)is a neht strulcture. (i) [] € M denotes the empty multiset
, I and I contain the places, = * it [](y) = o forall u e U.

transitions ancarcs ofV, respectively.
(iv) For a,b € M, the suma+b € M

(i) For z € PUT, *x =45 {ylyFz}is of @ and b is defined for eachy € U by
the pre-set andc® =,.; {y|zFy} is the (a+b)(u) =ges a(u) + b(u).
post-set ofr.

(v) Fora,b € M, ais smaller or equal to,
writtena < b, iff for eachu € U, a(u) <
b(u). The relation< is a partial order
on M.

(i) z,y € PUT forma loop iffz € *y and
Yy € *x.

(iv) N is strongly connectedff aF*a for

eachac PUT (vi) For a,b € M with b < a, the

subtractiona—b € M of b froma is de-
fined for eachy, € U by (a — b)(u) =ges

a(u) — b(u).

Definition 2. Let N = (P,T,F) be a net Notations A.1. A finite multisetz can be writ-
structure, let. be asetandlet: PUT — L. ten [ah L ,an]’ where for each: € U there

Then/ is a labeling of N (N is ¢-labeled. exista(u) indicesl < i < n with a; = u.

(v) Nisacycliciff aFtafornoa e PUT.



244

Expressions (I Sect. 2.6) (i) Two markingsM and M’ are ordered

. (written M < M) iff M(p) < M'(p)
As usual we assume constant and function for eachp e P.

symbols together with a fixethterpretation I

This includes a seU such that each con-Def'n't'On 5. LetN = (PT,F) be a net

stant symbol is interpreted as an element/of StUCture, let € T.

and each function symbol as a function over()) A conditon ¢ € cond is a

U. The symbols can be composed to form transition condition .

(variable-free)expressionsThe interpretation .

of symbols yields canonically an interpretatiorl) FOr p € *t andq € 1°, setspt, tq €

of each expression as an element/of M{(exp) are arclabelings oft. For
Two expressiong ande may thus be inter- technical reasons, wittia, b) ¢ I let

preted as the same elementgfin which case ab =ges [].

d ande areequivalentwrittend ~ e. As usual, (jii) Let X be the set of variables occurring in
we frequently confuse symbols and variable-  given transition conditions and arc label-
free expressions with their interpretation. ings oft. Then a mapping : X — U is
Expressions may also includeariables a mode oft . (t, 5) is aneventof N.
?’X':‘naeiztés';g,f'ngaglp\;,?rr,'g; I(:as)? CC_L:”(I]ng (iv) |:et6 be a mode. of. Then the markings
evaluatesX in U. This yields an interpretation [+, 8] and [t; B)° are defined for each
B(e) € U: replace each occurrence of each » € T by *[t. 8l(p) =4y B(pt) and

variablez in e by its evaluations(x). This re- (£, B1°(p) =aes B(tp).

turns a variable-free expressigie), whichis  (v) Let{ be a condition, let3 be a mode

interpreted as described above. of t and let M be a marking. Then
An expression e is a condition if M enableg in the mode3 (or M en-

Ble) € {true false} for each evaluation  aples the everit, 8)) iff 5(f) = true and

B.  For finite multisets, 5 generalizes to *[t, 5] < M.

5([617""‘3“]) —def [5(61)7---,5(%)]- .

Letexp denote the set of all expressions an&v )
cond the set of all conditions as assumed in the
given context.

Let M enable(t, 5), and letM’ = M —
°[t,B] + [t,5]*. Then(M,t, 5, M') is a
step oft in modes or a step of (¢, 3),

written M % M.

Markings, Modes, Steps (I Sects. 2.4—
2.6) System Nets[J Sect. 2.7)

Definition 4. Definition 6. LetS = (P, T, F') be a net struc-
ture, letU be a set, letM, be a marking of
() A mappingM : P — M is amarking of P overU, letT : T" — cond, let?¢ : F —
N. M(exp), letC C T.



245

Then N =4 (5, My, ¢, 7,C) is a (i) Amarking M’ isreachable from a mark-

system net over with M, ¢, 7 andC' its ini- ing M iff there exists a sequendd; LN
tial marking arc labeling transition condition M; (i=1,...,n)of steps withVly = M
andset of cold transitions respectively. and M, = M'.

Definition 9. LetV and L be sets, leb € V
General Assumptions andletE C V x L x V. Then(V, E,v) is
a (directed, initialized, arc-labeled) graph’

In the following we generally assume a $&t s the set ofverticesand (e;, £, e5) € E is an
called theuniverse and a system neV =/ aqge with ¢ its label

(S, My, ¢, 7,C) overU, with S = (P, T, F).

Furthermore, for eacp € P, t € T and Definition 10. Let R and E be the sets of

(a,b) € F we assuméy(p), 7(t) and/(ab) reachable markings and steps, respectively,

to be finite. of N. Then the graph(R, E, M,) is the
marking graph of\V , writtenmg(N).

(i) We usually writet for 7(t) and ab for

((a,b). Definition 11. A markingM of N is final iff

M enables only cold transitions.
(i) A marking aplace atransitionand an

arc of NV is sloppy for a marking, a pIaceHementary System Nets[[ Sects. 3.1,
a transition and an arc of. 3.5)

(i) Atransitiont is hotiff it is not cold. Definition 12. N is elementary iff

Reachable Markings, Marking (i) {e} isthe underlying univers¥,

Graph (O Sect. 2.8, 2.9) (ii) ¢ = true for eacht € T,

Definition 7. The sefR of reachable markings (i) ab = [e] for each arc(a,b) € F.

of N is inductively defined by ,
Notations A.2. Let N be elementary.

() Mo € R; (i) Each mapping: : {¢} — N can be iden-
tified witha(e) € N. Hence each mark-

() If M € RandM = M'is a step olN, ing M of N can be written as\/ : P —

thenM’ € R. N
Definition 8. (i) As arc labels are all alike, they are
skipped in graphical representations.
(i) A stepM = M’ is reachableff M is This likewise applies to transition condi-

reachable. tions.



246

(iif) As no arc labeling contains a variable,Definition 17. An ¢-labeled action A with
each stepl/ L8, ' can be written as transitionv represents the eveft 3) of N iff
ML v l(v) = (t,B), Ms, =°[t, fland M. = [t, 5]°.

Observation 1. For an elementary N, . ., .
“[t. 61(p) — [t.5]°(q) = |o] iff p € * and Distributed Runs (O Sect. 4.4)

q €t Definition 18. A net K = (Q,V,G) is a

Definition 13. Let N be elementary. N is e i

1-bounded iff for each reachable markidg

i) f h
and eactp € P holds: M(p) < 1. (1) foreachq € ¢,

‘¢|<land|q¢®|< T,

(i) The transitive closuré: " of G is irreflex-
Sequential Runs (0 Sect. 4.1) ive (i.e.,G" is a strict partial order);

Definition 14 (i) Foreachx € QUV,{y | yG*x} is finite.
: - uy «w, ~Definition 19. Let K = (Q, V, G) be a causal
(i) Afinite sequence of stepd, — M; —
.. % M, of N is afinite sequential run
of N iff M,, is a final marking ofV. () °K =ae; {g € Q| *q =0},

(i) An |r1g|n|te sequence of stepsly — (i) K° =, {g€ Q| =0}
M, = ... of N isincompleteiff there
exists an index. and a hot transitiont Observation 2. If V' = @ thenG = ( and
such that for eachi > n holds:M; en- °K = K° = Q.
ablest and*t N *u; = 0. o _
Definition 20. An /-labeled causal nek is a
(iii) Aninfinite sequence of steps is anfinite  distributed run ofN iff M., = M, and each
sequential run ofV iff it is not incom- action of K represents an event df. K is

plete. complete iff the marking/x. enables no hot
transition.
Actions (L Sect. 4.3) Definition 21. For a causal net Kk =

(Q,V, ), the relationG™ is the (strict, par-

Definition 15. An action is alabeled netl = tial) causal order onk.

(Q,{v},G)with*vNov* = Pand*vUv® = Q.

Definition 16. Let be a set labeled by somgsomposition of Distributed Runs
¢ : (@ — P xU. Then the markingl/, of (O Sect. 4.8)

P is defined for eaclp € P by My(p) =
[ui, ..., un] iff g1, g, are the elements ofpefinition 22. For i = 1,2 let K, =

Qwith £(q;) = (p,u;) fori =1,...,n. (Q;, Vi, G;) be occurrence nets, labeled with



247

;. Let(Q,UV1)N(QUV,) = K7 = °K, and e M, € R™ if M, is n-bounded:;
for eachp € K7 let/,(p) = ly(p). Then the . : L
occurrence el =g.; (Q1UQ,, Vi UVs, G U o If M < RE ) M = Misa
Gs) labeled with?, with £(z) = £;(z) is the step aﬂgﬂf is n-bounded, then
composition of; and K, written K o K. M e R™.

Observation 3. There may exist reachabte
Scenarios (J Sect. 5.1) bounded markings that are natreachable.

Definition 23. A distributed run K is a Definition 27.
scenario ofN iff Myx = My-o.
(i) Letp € P and assumé/,(p) < n. Let

More generally: p be a fresh place withp = p°®, p* = *p

Definition 24. A distributed run K is a and My(p) = n — My(p). Thenpis the
scenario for a marking/ iff M < M, and n-complement of.
M < Mp..

it there (i) Assumel; is n-bounded. Ther N®
is defined asN, extended by the-
complemenp for each placep.

Definition 25. N is scenario based
exists a finite setl of scenarios and a finite set
B of finite distributed runs such that

(i) each finite concurrent run ofN is Lemma 1. Letn € N such that), is n-
shapeds; - -- S, with $;,5, € B and _bounded. LeR?’ be the set of rgachablc_a_ ma_lrk-
Sy S L EA ings of N™. Then there exists a bijection

o f: R™ — R'such that for allM, M’ € R™

(i) each infinite concurrent run ofN is holds: A7 5 M’ is a step onV iff f(M)

;hagedslsgf-l-- with 5, € B and ryr)is astep of V™.
25193y - - - € .

Notice thatS; and .S,, may be empty concur-a e Weights ([I Sect. 6 2)
rent runs, i.e., including no transitions. S

Definition 28. Let N be elementary, letv :
Place Capacities I Sect. 6.1 (P T)U (T x P) — N be a mapping with
P 0 ) w(a,b) = 0if (a,b) ¢ F and let M, M’ be
Definition 26. Let N be elementary, let/ be markings of/V.

a marking ofV, and letn € N.

() (IV,w) is the w-generalization ofV.
(i) M is n-bounded iffM(p) < n for all

pePp. (i) M 5 M'isa w-step iff for eachp € P

(i) The setR™ of n-reachable markings of ~ w(p,t) < M(p) and M'(p) = M(p) —
N is inductively defined by w(p,t) +w(t, p).



248

Definition 29. Let N’ be an elementary system(ii) (R, /) € F iff R dispatches o contains
net. A finite sequential run= M, 2 M; 2 each/-edge,
tn . o ..
- = M, of N is an N-reduction ofaflfute (i) Mo(R) = 1if v € R and My(R) = 0 if

2 tor n!

sequential run’ = M) — M{ = -+ = vé¢R.
M), of N"iff t1, ..., 1 is obtained by eliminat- .
ing fromt}, ..., ¢, all transitions that are not Theorem 1 (Synthesis Theorem)f the syn

thesis problem of a state automatgncan be
solved by al-bounded elementary system net,

Lemma 2. Let (N, w) be aw-generalization then the system net 4fis a solution.

of N. Then there exists an elementary system

”_‘ZIN’ _Srl]JCL‘ t?_at_ theN'VEdUG“fns Ofé‘;' coin- Nets with Interfaces, Communicat-
cide with the finite sequential runs of. ing Nets (J Sects. 8.1, 8.2)

inT.

Regions (I Sect. 7.3) Definition 32.

i) Let I € PUT. Then(S,I) is an
Definition 30. Let Z = (V, E,v) be a graph, ) ™ (S.1) i

interface net. [ is the interface of

let RC V,letw =4p h— k € E. (S.1).
(i) Rreceivesriff h ¢ Randk € R. R (i) AsetM of interface nets itassociative
dispatchesr iff h € Randk ¢ R. R iff no element appears in the interfaces of
containsr iff b, k € R. three or more of the nets i/ .

(i) Ris a region ofZ iff for each edge la- Defipition 33. Fori =1,2letN; = (S;, I;) be
bel ' R receives either each or no (WO interface nets such tha = (P, 7;, )

edge, andk dispatches either each or né"d(F1UT1) N (R UT:) € LN L.

(-edge. (i) The interface netV, © Ny =4; ((Py U
Py, Ty UT, FLUF), (LU L)\ (11N 1))

(i) A region R is minimal iff no proper is the composition ofV, and N,.

nonempty subset ok is a region. Let

mreg(Z) denote the set of minimal re- ) and N, communicate iff for each
gions ofZ. z € I, N I holds:

Definition 31. Let Z = (V, F,v) be a graph, e cP NP,
let L be the set of labels occurring at the edges
of Z. Thensn(Z) =45 (mreg(Z2), L, F, M)

is the (elementary) system net &f, where

e either®z C Ty andz® C Ty, or
*xr CTs andz*® cCTj.

Theorem 2 (Composition Theorem for Inter-
() (¢,R) € F iff R receives orR contains face Nets) Fori = 1,2, 3, let N; be interface
each/-edge, nets with the interfaces.



249

(@) Ny & Ny = Ny ® Ny. (v) For each placep € P, p > []is the

canonical inequality op.
(b) If LNnlhnNil; = @, then(N1 @NQ) B N3 =

N; @ (Ny & N3). Lemma 3. Each canonical inequality of a
placep of N holds inN.

Decomposition into Open SubnetsDefinition 36. An equation or inequality over
(O Sect. 8.3) N is astate propertyf N.

Definition 34. Let P’ ¢ P. T' c T. ' — Theorem 5 (Validity Theorem for Proposi-
FA(P x T andS' = (P’ Pa ). Further- tional Properties) For a system netV and
more. letl ¢ P’ such that for eacly ¢ / Propositional propertiesy and 3, the follow-
*pU*y C T'. ThenN' = (5,1)is an NG hold:

open subnet of. N is minimal iff there ex- :

istr')s. no open subne&t” = (P", 7", F") with ) NEanfiff Ni=aandN = 5.
S"#S,PTC P, T"CT and " C . b) If not N = a, then not necessarilyy |=

Theorem 3 (Associativity Theorem) Let M o

be a set of pairwise communicating interface) If N =« or N |= 3, thenN = a V .
nets. Then/ is associative.
d) If N = o, thenN = — a.

Equations and Inequalities (0 Sects. RN = —a, thenN = o — .
9.4,9.7)

Definition 35. Let A be a set, lew € A, Traps and Cotraps of Elementary
let + : A x A — A be an operation, let System Nets [l Sects. 10.1-10.3)
p1,...,pr € Pyandletf,, ..., fr.: M — A.
Definition 37. Let() C P.
() G: filpr) + -+ + fe(pr) = ais an
equation overy . () *Q =der Uyeq "aand@® =ser U,eq "

(i) For a marking M of N, an equation (i) Qisa trap of N iff °*Q) C Q°.
G holds in M (written M = G) iff _ _
AMp)) + -+ fo(M(p) = a (i) @Qisa cotrap of N iff Q* C *°Q.

(i) G holds inN (G is valid in N, written (iv) @ is initially marked iff for at least one
N k= G) iff M = G for each reachable ¢ € Q, Mo(q) > [].

marking M of V. (v) N has the trap/cotrap property iff to

(iv) Replacing in (i) and (i) the equality=" each cotrapR there exists an initially
with “<” or “ >"yields inequalities marked trap) C R.



250

Theorem 6 (Trap Theorem)Let NV be an el-
ementary system net with an initially markegnd N
trap @ = {qi,...,q-}. Then the following in- —
equality holds inV:

211 20

= : : are the
Rk Rk

vector representations @/ andt, and the

e @) matrix representation alV, respectively.

Theorem 7 (Cotrap Theorem)Let N be an _ ) N
elementary system net with an initially urf€Mma 4. With component-wise addition and
marked cotrapQ = {qi,...,q.}. Then the comparison of vectors holdsY/ enablest iff

following equation holds iV: t < M,andM = M'is a step iffM enables
tandM’' = M +t.

¢+...+¢ =0 (2)

Theorem 8 (Theorem on Marked Cotraps)Pl : :
ace Invariants and Equations of
Let N be an elementary system net andAét q

be a marking ofV that marks each cotrap of” 12C€ Invariants of Elementary Sys-
N. ThenM enables at least one transition. tem Nets (J Sects. 11.3, 11.4)

Theorem 9 (Trap/Cotrap Theorem)Let N pefinition 39. Let 0 = (0,...,0) be (-

be an elementary system net that has thgnensional and letr = (n4,...,nx) be an
trap/cotrap property. Then each reachablgteger solution of: - N = 0.

marking M of N enables at least one transi-

tion. () nisa place invariant ofN .

Vector and Matrix Representations (1) 70 =as - Mo is the constant ofu .

for Markings, Transitions and Ele- iy n, - p, + - + n, - p = np is the
mentary System Nets[J Sects. 11.1, equation of .

11.2)

Definition 38. W.l.o.g. letP = . . .
andT = {t, té}g For i — i{pl e g'r“]}d (v) Thecarrierof n is the set of all places;

—1, ifp; €°t;andp; ¢ t° Theorem 10 (Elementary Place Invariants
! Theorem) Let N be an elementary system net
with a place invariantz. Then the equation of

(iv) nis positiveiff nqy,...,n, € N.

Zij =def +]., if pi € t; and ¢ .tj

0, otherwise n holds in V.
M (p1) i1\ Theorem 11(Converted Place Invariants The-
Then M = : b= : orem) Let N be an elementary system net

M (py) 2/ such that for each transition there exists a



251

reachable marking)/ that enablest. Fur- Traps of a System Net[J Sect. 13.1)
thermore, let equation (2) hold iv. Then
n = (ny,...,n;)isaplaceinvariant ofV with Definition 42. For a finite multisetA =

the constant,. lar,...,a;] let |A] =4; k. Let@ =
{q1,...,q:} be atrap ofN. Then|g| + --- +

Theorem 12 (Positive Place Invariants Theola:| > 1 is the inequality of@ .

rem). A placep with a positive place invariant

is bounded. Sum Expressions [I Sects. 13.2,

Theorem 13 (Invariant Trap/Invariant Cotrap13'3)
Theorem) The carrier of a positive place in-pgfinjtion 43. An expressiore is unary if at
variant of a system nev'is also a trap and a iyt one variable occurs in (This variable

cotrap of V. may occur several times).

_ _ _ Definition 44. The seSE of sum expressions
Calculating with Equations and In- is inductively defined:

equalities (J Sects. 12.1, 12.4) () 0 SE

Definition 40. LetGy : ny-p1+---+ng-pp =

no and Gy : 1y - py + -+ + Mg - pr = mp be (i) For e, e, € SE, also(e; +e;) € SE and

equations and let € Z. Then —e1 € SE,
. (iii)y If  f(by,...,b,) is an expression and
() G1+ Gy =gey (n1 +ma) - p1 +oeet e1,...,e, € SE, then f(ey,...,e,) €
(ng + mg) - pr = no + mg is the SE,

sum ofG, andG,, ,
(iv) If e; is unary there; - e; € SE.
(II) Z'G1 =def Znyprt+- 2N Pr = 2N

. 4 Notations A.3. A multiset|aq, ..., a,]| IS rep-
is the scalar product of3; with = . a1, an) P

resented by the expressian+ - - - + a,. The

Iti [ :
Theorem 14 (Addition Theorem of Valid empty multiset] is represented by

Equations and Inequalitieshet N be an ele-
mentary system net. The sum of two equatidAsoduct and Equivalence of Sum

or inequalities that hold inV, as well as the Expressions (I Sect. 13.3)

product of such an equation or inequality with

a factor z, again hold in/V. Definition 45. Let ¢; and e; be two sum ex-
pressions, lete; be unary with variablez.

Definition 41. A state property- is stable iff Then the product ofe; with e, is defined as

for each stepl/ 5 M’ of N holds: IfG holds €1 - €2 =aey €1z \ €2] (i.€., each occurrence
in M thenG holds in)". of z in e, is replaced by,).



252

Definition 46. The sum expression equiv- (i) W.l.o.g for each place» assumel/y(p)
alence ~ is defined for sum expressions be represented as a sum expression. Then
e1, e, e3 and function symbolg as the sum expressidn =4.¢ by (Mo(p1)) +

-+ + b (My(pr)) is the constant o .
® ¢ + 69 ~ eg+ ey,
(i) The equation (p1) + - - - + be(px) = bo
o (e1+eg) +eg~e + (62 +es), is the equation ob .

Theorem 15 (Generic Place Invariant Theo-

e ¢ +0~ey,
rem). Let N be a system net and létbe a

e ¢; + (—ep) ~0, place invariant ofN. Then the equation af
holds inV.
o f(...,e1 +eg...) ~ f(...,e1,...) +
flo e, ), Covering Graph (O Sects. 14.4,
o f(...,—e1,...)~—f(...,e1,...), 14.8)
e f(...,0,...)~0. Definition 51. Letc : P — N U {w} be a

i . mapping.
Definition 47. The calculation rulesor sum

expressions are given by the above sum expre$l) ¢ representa markingM of N iff for all
sion equivalence together with the equivalence P € P with ¢(p) € N holds: M(p) =

as described in Sect. 2.6. c(p).
(i) ¢ covers N iff ¢ is reachable or rep-
Matrix and Place Invariants for resents infinitely many reachable mark-

. _ ings Ky, K1,... such that for alli =
Generic System Netsl( Sects. 13.5 0.1.2,... and allpwith (p) — w holds:

13.8) M;(p) > i.

Definition 48. As in Sect. 11.1, w.l.o.g leDefinition 52. Let GG be a finite, initial, di-
P ={py,....pr} andT = {t,,....t,}. With rected, arc labeled graph with initial ver-
% =des Lipi — Lip;, lett; and N as in Sect. tex Mo and markings that coverV as ver-

11.1 and 11.2. ThelV is the matrix of NV . tices, such that there exists a sequential run
o My % M, 2 ... of N iff there exists a

Definition 49. Letby, ..., b, be unary sum ex-pathp, 2 n, 2 ... of G such thatn; rep-

pressions such that fof = 1,...,k holds: resentsis; for i = 1,2,.... Then,G is a

bi-N(1,j)+---+bx- N(k, j) can be reduced coyering graph ofV .
to 0 by means of the calculation rules. Th

e "
b—aes (br,.... by is a place invariant of\ . Theorem 19(Theorem on Dead Transitions)

Let H be a covering graph of an elementary
Definition 50. Letb = (b1,...,b;) be a place System netv. A transitiont is dead inN if
invariant of V. and only if H does not have &labeled edge.



253

Marking Equation, Transition In- Theorem 24(Transition Invariants Theorem)

variants (D Sects. 15_1_15_3) Let ¢ be a transition invariant of an elemen-
tary system nelv and leto be a step sequence

Theorem 20 (Finiteness Theorem of Positivdrom a marking)/ to a marking)/’ such that
Place Invariants)If each place of an elemen« is the counting vector af. Then)M and M’
tary system nelv has a positive place invari-are identical.

ant, then only a finite number of markings

reachable inV. L?heorem 25(Reproducibility Theorem)If an

elementary system né{ does not have any
Definition 53. For two markingsM/, M’ of transition invariants, then no marking is again
N, the marking equation of\/ and M’ is the reachable from itself.
equationVM’ = M + N - x.

Definition 54. Let ¢ = M; = M, ~ Run Properties (O Sects. 16.1, 16.3)

Y M, be a finite sequence of SRS tinition 56. Lete and £ be stat t
Nt Foreach transitiort, leta; —. efinition 56. Lete and f be state properties.

i | ws = t;}]. Thena = (a, a,) is the Then the formula — f is a run property .
; iH- e
counting vector of . Definition 57. A run property e +— f

Theorem 21(Theorem on the Marking Equa—h_()l_Ols m]Y ,(VYr'tte“N = ? — /) ift for eaffh
tion). Let N be an elementary system net Wit@mtte or infinite) sequential rum = M, =
a step sequence from a markingM to a Mi — -+~ holds: To eachi with M; = e there
marking M/’. The counting vector of solves €Xists &j > i with M; |= f.

the marking equation foi/ and M". Definition 58. For Q) C P andt € T, let
Theorem 22(Viability Theorem) Let N be an eff(Q,?) =aer (@ \ *t) Ut*.

elementary system net with markings and Theorem 26(Theorem on Deduced Run Prop-

. : : .
M'and a SOIUt'On_@ to the mqulng equat'onerties) Let N be an elementary system net and
(3). Then there exists a markidgof NV and a let O be a subset of its places such thiaen-

step sequence from M + L 10 M" + L SUCh a4 ot least one hot transition of. LetT —
thata is the counting vector af. {t1,...,t,} C Q° such thatN = Q — —*¢
Theorem 23(Acyclic Viability Theorem) Let for eacht € Q*\T'. Then

N be an acyclic elementary system net with
markingsM and M’ and leta be a solution to NEQe ef(@t)V...Veff (@ tn).

the marking equation fof/ and M’. Thena | emmas5. Lete, f, g be state properties.
is the counting vector of a step sequence from
M to M'. () f N EFew— fandN | f — gthen

- . N Eerg.
Definition 55. Each solution(my, ..., m;) of

N -z = 0 withmy,...,m, € Nisa (i)lf NEer fandN = g — fthen
transition invariant of/N. NE(evg)—f.



254

(i) f NEe— (fAg)thenN = e — f c) If the rank of NV is k, then N has exactly
andN E e g. k + 1 clusters.
(iv) If N e — fthenN e f.

Marked Graphs (O Sects. 18.1, 18.2)
Free-Choice Nets [ Sects. 17.1-

Definition 61.
17.4)
Definition 59. N is free-choice iff for each (i) Visa marked graph iftV is elementary
p € P and each € T with (p,¢) € F holds: and for eactp € P holds: |*p| = |p*| =
p* = {t}or*t = {p}. L

Theorem 27 (Trap/Cotrap Theorem for Free— .. . .
Choice Nets)Let NV be a free-choice net. Then(“) {pi‘ 1 Pn} %mg)s-ls .a cxcl.e ‘|ffW€tohr
N is live if and only if N has the trap/cotrap ~ © " PP =P
property. Po def Pn-

Definition 60. Theorem 30 (Cycle Theorem for Marked
Graphs) Let N be a marked graph and let
p1...pn, be a cycle ofN, initially holding a
total of £ tokens. Then the following equation

() Letp € P, p* = {t1,...,t,} and*t; =
<o =°*t, = {p}. Then{p,ty,... t,}is

a fc-cluster . holds inV:
(i) Lett € T,°*t = {p1,...,pn} @ndp} =
- =pt =A{t}. Then{t,p1,...,p,}isa pr+...+p, =k

ds-cluster .

Theorem 31 (Liven Theorem for Mark

Theorem 28 (Cluster Theorem for Free— eorem 31 (Liveness eorem Tor Va ed

) .~ Graphs) A marked graphV is live if and only

Choice Nets) An elementary system natis . ) I
: . : if each cycle ofV contains at least one initially

a free-choice net if and only if each place and
. S marked place.

each transition ofV lies in exactly one cluster

Of ' Theorem 32(Theorem on Live and 1-bounded

Theorem 29(Rank Theorem for Free-Choicévlarked Graphs)A live marked graphV is 1-
Nets) For a connected free-choice néY, bounded if and only if each place 6f is part
there exists an initial marking with whiclv  of a cycle that initially contains exactly one to-
is live and bounded if and only if ken.

a) N has a positive place invariant whose

. : Theorem 33(Theorem on Initial Markings of
carrier contains each place af

Marked Graphs)For each strongly connected

b) N has a transition invarianj whose car- marked graphV there exists an initial mark-
rier contains each transition oV ing such thatV is both live and 1-bounded.



255

Well-Formed Elementary System run and lett € T'. Thenw neglects fairnesfor

Nets (0 Sects. 19.2, 19.3) t iff infinitely many markings\/; enablet, but
t = t; for only finitely many indiceg. The run

Definition 62. Let N be elementary and |6t w respectsfairness fort iff w does not neglect

be a reachable marking (callefinal). Then fairness fort.

(N, E) is well-formed iff

(i) For no markingL # 0, E + L is reach-

able,
Net Schemata [J Sect. 22.2)
(i) Each transition ofNV is enabled in at least

one reachable marking, In contrast to Sect. 2.6, here we assume no

(i) E is reachable from each reachabléixed interpretation of the symbols in expres-
marking of N sions. Rather, inet schema coveral inter-

pretations. This requires a symbolic represen-
Theorem 34(Well-formedness TheoremAN a4in of markings. To this end, a markirg
elementary system nét with a final marking assigns each plagea et} (

. : PR p) of variable free
5 IS \gleg-formed it and only V™ is live and expressions. M (p) is frequently represented
ounded.

as a constant symbol, to be interpreted as a
finite multiset. In a net schema, different ex-
Fairness Assumptions [J Sect. 20.3) pressions are never equivalent in the sense of
Sect. 2.6. The only equivalences to calculate
Definition 63. Let N be elementary, let> = with are those for multiset expressions, as in
M, LN M, 2, be an infinite sequentialSect. 13.3.



Bibliography

[1] W. van der AalstVerification of workflow netd.NCS 1248 pp. 407-426 (1997)

[2] W. van der Aalst, N. Lohmann, P. Massuthe, Chr. Stahl, KIMultiparty contracts:
agreeing and implementing interorganizational processasmputing Journal (2008)

[3] M. Abadi, L. Lamport Composing SpecificationsACM Tr. Prog. Lang. Syst. 15(1),
73-132 (1993)

[4] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, G. Fresthinis Modeling with
Generalized Stochastic Petri Net&liley (1995)

[5] B. Alpern, F. SchneidemDefining livenessInformation Processing Letters 21, 181-185
(1985)

[6] E. Badouel, P. Darondealheory of regionsLNCS 1492 (1998)
[7] G. Balbo Introduction to generalized stochastic Petri netNCS 4486, 83-131 (2007)
[8] L. BernardinelloSynthesis of net systemiS\ICS 691, 89-105 (1993)
[9] E. Best, R. Devillers, M. KoutnyPetri Net Algebra.Springer (2001)
[10] E. Best, C. Fernandedonsequential ProcesseSpringer (1988)

[11] N. Busi Analysis issues in Petri nets with inhibitor arcEheoretical Computer Science
275 (1-2) pp. 127-177 (2002)

[12] J. Cortadella, M. Kishinevsky, L. Lavagne, A. Yakovlderiving Petri nets from finite
transition systemdEEE Transactions on Computers 47, 859-882 (1998)

[13] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagi\. YakovlevPetrify: A tool for
manipulating concurrent specifications and synthesis phesronous controllerdEICE
Transactions on Information and Systems E 80-D (3), 315(39297)

[14] C.S. Calude, G. Paun, G. Rozenberg, A. Salomaa (dd#)set ProcessingLNCS 2235
(2001)



257

[15] J. Desel, J. EsparzBree Choice Petri NetsCambridge Tracts in Theoretical Computer
Science, Vol. 40 (1995)

[16] J. Desel, G. Juds What is a Petri net? Informal answers for the informed readier.H.
Ehrig, G. Julas, J. Padberg, G. Rozenberg (Eds.): Unifying Petri Nets. LRI2S, 1-25

[17] J. Desel, K.P. Neuendorf, M.D. RadoRroving nonreachability by modulo-invariants.
Theoretical Computer Science 153, S.49-64

[18] J. Desel, W. Reisig, G. Rozenbekgctures on Concurrency and Petri NetNCS 3098
(2004)

[19] E.W. Dijkstra Cooperating Sequential Processd® EWD-123 (1965)

[20] E.W. Dijkstralnvariance and non-determinacin: C.A.R. Hoare, J.C. Sheperdson (Ed.):
Math. Logic and Programming Languages, Prentice Hall, 3-11&b (1985)

[21] A. Ehrenfeucht, G. RozenbeRgartial (set) 2-structuresActa Inf. 27, S. 315-368 (1990)

[22] J. EsparzaDecidability and complexity of Petri net problems — an idwotion. LNCS
1491, 374-428

[23] J. Esparza, K. HeljankoUnfolding — A Partial Order Approach to Model Checking.
Springer (2008)

[24] J. Esparza, M. NielsebDecidability issues for Petri nets — a survégpurnal of Informatics
Processing an Cybernetics 30(3), S. 143-160 (1994)

[25] A. Finkel The minimal coverability graph for Petri neteNCS 674, pp. 210-243 (1993)
[26] H.J. GenrichDas ZollstationenproblentaGMD St. Augustin (1971)
[27] H.J. GenrichEinfache nicht-sequentielle Prozes&MD Bonn, Report No. 37 (1971)

[28] H. Genrich, K. LautenbachSystem modelling with high-level Petri netSheoretical
Computer Science 13, S. 109-134 (1981)

[29] C. Girault, R. ValkPetri Nets for Systems Engineerirfgpringer (2003)

[30] L. Gomes, J.P. BarroStructuring and composability issues in Petri net modeliidEE
Tr. Industr. Inf. 1(2), 112-123 (2005)

[31] G. GoosVorlesungeruber InformatikVol. 1, Springer (1995)



258

[32] Y. Gurevich Sequential abstract-state machines capture sequentigrithms. ACM
Transactions on Computational Logic 1, 1 pp. 77-111 (2000)

[33] M.H.T. Hack Analysis of Production Schemata by Petri Ne&t8T, Cambridge (1972)

[34] R. Hamadi, B. BenatallalA Petri Net-based model for web service compositidath
Australian Database Conference (2003)

[35] D. Harel, R. MarellyCome, Let's PlaySpringer (2003)

[36] A.W. Holt, H. Saint, R. Shapiro, S. Warshakinal Report of the Information Systems
Theory Project.Griffiss Air Force Base (1968)

[37] K. JensenColoured Petri nets and the invariant methotheoretical Computer Science
14, S.317-336 (1981)

[38] K. Jensen, L.M. Kristense@oloured Petri NetsSpringer (2009)

[39] R.M. Karp, R.E. Miller Parallel program schematal. Comp. Syst. Sci. 3, pp. 147-195
(1969)

[40] E. Kindler, R. WalterMutex Needs Fairnesdnformation Processing Letters 62, 31-39
(1997)

[41] P. Kritzinger, V. Bausdntroduction to Stochastic Petri Net¥ieweg Verlag (2002)
[42] L. Lamport Specifying Systemaddison Wesley (2002)
[43] K. LautenbachLiveness in Petri Net<GMD St. Augustin 75-02-1 (1975)

[44] K. LautenbachLinear algebraic calculations of deadlocks and traps: K. Voss, M.J.
Genrich, G. Rozenberg (Eds.) Concurrency and Nets. Spria§&i]

[45] R. Lorenz, S. Mauser, G. Juh&$ow to synthesize nets from languages: a surd$th
Winter Simulation Conference, IEEE Press, 637-647 (2007)

[46] Z. Manna, A. PnueliThe Temporal Logic of Reactive and Concurrent Syst&psnger
(1992)

[47] E.W. Mayr Ein Algorithmus @ir das allgemeine Erreichbarkeitsproblem bei Petrinetzte
und damit zusammeahgende ProblemélU Miinchen (1980)

[48] E.W. Mayr An algorithm for the general Petri net reachability proble®AM J. Com-
puting 13, 3, 441-460 (1984)



259

[49] K.L. McMillan Using unfoldings to avoid the state explosion problem invefication
of asynchronous cicuitd.NCS 663, 164-177 (1993)

[50] J. Misra, K.M. ChandyParallel Program Design: A FoundatiorAddison-Wesley (1988)

[51] T. Miyamoto, S. KumagaiA survey of object oriented Petri nets and analysis methods.
IEICE E88-A, 2964-2971 (2005)

[52] U. Montanari, F. RossContextual netsActa Informatica 32, 545-596 (1995)

[53] T. Murata State equation, controllability and maximal matchings efrPnets. IEEE
Trans Autom. Contr. 22(3), 412-416 (1977)

[54] M. Nielsen, G. Plotkin, G. WinskedPetri nets, event structures and domaifiseoretical
Computer Science 13, 85-108 (1981)

[55] S. Owicki, L. LamportProving liveness properties of concurrent progrartA€M Trans.
on Programming Languages and Systems, 4 (3) 455-495 (1982)

[56] C.A. PetriKommunikation mit Automatemstitut fur Instrumentelle Mathematik, Bonn,
[IM Report No. 2 (1962)

[57] C.A. Petri Grundsatzliches zur Beschreibung diskreter Prozes8e.Colloquiumuber
Automatentheorie (3rd Collog. on Automata Theory), Bakbker, 121-140 (1967)

[58] C.A. PetriNon-sequential ProcesseSMD St. Augustin (1977)

[59] C.A. PetriNets, time and spacé&heoretical Computer Science 153, S. 3-48 (1996)
[60] Petri Net World: http://www.informatik.uni-hamburg.de/TGl/PetriNets/

[61] L. Priese, H. WimmelTheoretische Informatik — Petri Netz8pringer (2003)

[62] W. ReisigPetrinetze — eine Eifthrung. Springer (1982)

[63] W. ReisigPetri Nets — An IntroductionSpringer (1985)

[64] W. ReisigElements of Distributed Algorithm&pringer (1998)

[65] W. Reisig 50 Jahre Modellbasierter Entwurf: Vom Modellieren mit Pragrmen zum
Programmieren mit Modellenn: W. Reisig, J.-C. Freytag (Eds.): Informatik — Aktuelle
Themen im historischen Kontext, Springer (2006)

[66] W. Reisig The Decent Philosophers: An exercise in concurrent belavidundamenta
Informaticae 80 1-9 (2007)



260

[67] W. Reisig The Scholten/Dijkstra Pebble GameNCS 4800, 589-595 (2008)
[68] W. ReisigSimple composition of netekNCS 5606 pp. 23-42 2009

[69] W. Reisig, W. BrauerCarl Adam Petri und die Petrinetzdnformatik-Spektrum 29(5),
Oktober 2006, Springer, 369-374 (2006). English versiarG&enbe (edfFundamental
Concepts in Computer SciencelBperial College Press (2007)

[70] W. Reisig, G. Rozenbergectures on Petri Nets I, ILNCS 1491, 1492 (1998)
[71] C. Reutenauelhe Mathematics of Petri NetBrentice Hall (1990)

[72] K. Schmidt Verification of siphons and traps for algebraic Petri netNCS 1248, 427-
446 (1997)

[73] K. SchmidtModel-checking with coverability graphBormal Methods in System Design
15(3), 239-254 (1999)

[74] H. Strrle Models of Software-Architecture-Design and Analysis withLUamd Petri
Nets.Books on Demand (2000)

[75] R. Valk Self-modifying nets, a natural extension of Petri nethNCS 62 pp. 464-476
(1978)

[76] R. Valk Object Petri netsLNCS 3098, pp. 819-848 (2004)

[77] A. Valmari The State Explosion Problemn: W. Reisig, G. Rozenberg (Eds.), LNCS
1491 (1998)

[78] W. Vogler Concurrent implementation of asynchronous transitionesyst LNCS 1639,
284-303

[79] A. Wegrzyn, A. Kavatevich, J. BieganowsHKbetection of deadlocks and traps in Petri
nets by means of Thelen’s prime implicant methiod. J. Appl. Math. Comp. Sci. 14, 1
(113-121) (2004)

[80] M. Yamauchi, T. Watanabélime complexity analysis of the minimal siphon extraction
problem of Petri nets.IEICE Tr. Fund. El. Com. Comp. Sci., E 82-A, 11, 2558-2565
(1999)

[81] A.V. Yakovlev, A.M. Koelmans Petri nets and digital hardware design.NCS 1492,
154-236 (1998)



Index

w-marking, 153

action, 47
causally ordered, 56
representation of a transition as, 48
actions
independent, 50
arc, 20
arc weight, 73

causal net, 49
cluster, 181
constant of a place invariant
of a system net, 144
of an elementary system net, 125
cotrap, 118
counting vector, 163
covering, 156
covering graph
of a system net, 154, 158

elementary system net, 33
n-bounded, 72
elements of a net, 21
equation of a place invariant
adding of, 131
of a system net, 144
of an elementary system net, 125
equation of a system net
stable, 135
valid in a marking, 104
valid in the net, 104
expression, 22

final marking, 29, 34
free-choice net, 179

inequality of a system net, 106
validity of, 106

inhibitor arc, 76

initial marking, 28

kinds of tokens, 23
loop, 21

marked graph, 185
marking, 22, 24

reachable, 28, 34
marking equation, 163
marking graph, 28, 34
matrix

of a system net, 142

of an elementary system net, 124
mode of a transition, 25
multiset, 23

adding, 23

comparing, 23

empty, 23

finite, 23

subtracting, 24

net structure, 21

Petri net schemata, 222

place, 20
canonical inequality of, 106
complement of, 72

place invariant



262

of a system net, 142

of an elementary system net, 125

positive, 127
place set

simultaneously unbounded, 157

post-set, 21

pre-set, 21

priority, 76

proof graph, 174

propositional state properties, 110
dot notation for, 110

reachability graph, 28
region, 83
minimal, 83
reset arc, 76
run
complete, 46
complete distributed, 51
composition of distributed, 57
distributed, 50
sequential, 46
run property, 168

scalar product, 131
scenario, 63
state, 24
state automaton, 79
abstract, 81
state of a, 83
step
in a mode, 26
vector representation of, 124
with constant arc labeling, 25
sum expression, 140
addition of, 140
application to a multiset, 141
inverted, 140
product of, 140
synthesis problem, 81

system net, 28
bounded, 152
deadlock-free, 151
live, 151
reversible, 152
scenario-based, 64
terminating, 151
weakly live, 152

transition, 20
cold, 28, 33
enabled, 25
hot, 28
transition invariant, 164
trap, 117

universe, 23

validity of a run property
in a sequential run, 168



263



https://www.researchgate.net/publication/266860206

