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Preface

Foreword

Dear reader:
The currently common graphic representation for nets as well
as the methodology of their refinement and abstraction was in-
vented in August 1939 to visualize my knowledge about chem-
ical processes. I also devised a plan to analyze catalytic pro-
cesses.

This plan failed due to the beginning of the Second World
War, because the necessary equipment was no longer available.
So I had no other alternative but to study my invention on pa-
per.

In 1941, I was so excited about my father’s report on Konrad
Zuse’s programmable computer that I could not stop thinking
about it. However, it was not until the late 1950s that it became
evident that the development of computer technology would
greatly influence our society.

It seemed to me that a theoretical framework was needed to
formulate and solve the basic problems that arose for the struc-
ture and the sensible use of this computer technology – inde-
pendent from the current state of the technology, but in accor-
dance with the laws of physics. I decided to lay the foundations
of this framework. Indeed, I remembered my toy from 1939
and applied it to signals and bits, but formulated my results
predominantly in mathematical form to achieve a higher accep-
tance of my dissertation on “Communication with Automata”
(original German: “Kommunikation mit Automaten”). (Only
after my exam, did I reintroduce the net graphics.)

My arguments were:

• The theory of computability is based on the Turing ma-
chine, consisting of an abstract automaton and an infinite
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tape. While the automaton can be implemented by means
of a computer, the infinite tape cannot.

• To avoid a contradiction to the laws of physics (finite, in-
variant speed of light and the uncertainty principle), the in-
finite ribbon has to be replaced with two short shifting reg-
isters. Attached to the end of each register is a register cell
factory that works at least as fast as it takes to access the
register.

• The cells of the register are only allowed to communicate
with their two neighbors, just as each transition can only
affect its immediate neighbors.

• That means that the computability theory current at that
time, with its global state changes, cannot be applied to the
kinds of distributed systems that the technology is devel-
oping towards. Trying to conceive the Internet as a single
automaton is simply not useful.

Since then, many others have helped to develop the net the-
ory of distributed systems into an established field of knowl-
edge, with many computer tools for the study of system prop-
erties hidden within the graphical notation, like behavioral in-
variants or the potential disassembly into components.

This book chooses the most important, most original, most
successful and most basic concepts and presents them compre-
hensively. In doing so, it offers students and practitioners, in
some cases even specialists of the field, an approach to or a
new view on distributed systems.

I wish this book a wide distribution and a long usage.
St. Augustin, Germany, January 2008
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Preface

Petri Nets – An Introduction[63] is a slim book that was pub-
lished almost 30 years ago and was quickly translated into six
languages and sold several thousand copies. For a long time,it
was considered the standard reference for Petri nets.

Now it is time for a new introduction. Petri nets have been
further developed in unbelievably diverse directions. “First
model, then program” is a principle that increasingly domi-
nates software engineering, and Petri nets are a popular mod-
eling technique.

The biggest problem in writing an introduction to a topic
is the selection of the content. Today we have a better under-
standing of which modeling techniques and analysis methods
are truly central than we had 30 years ago. Those techniques
and methods are presented here. Their usefulness is illustrated
with the help of several examples, particularly the case studies
in the last part of this book. The software engineer can use
these case studies as a guide. At the same time, the theorist
will find the classic results of Petri net theory, complemented
with a few new concepts and a new taxonomy.

The formal arguments in this book are reduced to a mini-
mum. Examples often have enough detail to sufficiently dem-
onstrate the characteristics of the content. Furthermore,in-
dividual chapters can often be read independently from one
another. For instance, the basics introduced in the first three
chapters of Part I are enough to understand the case studies in
Part III. Only their analysis requires knowledge of the methods
presented in Part II.

This book was not written for a specific audience such as
students, teachers, theoretical computer scientists or software
engineers. Instead, it addresses a broad audience by compiling
the central developments of the last 50 years of net theory and
practice and presenting it in a comprehensible way. The selec-
tion of aspects presented here is, therefore, highly subjective.
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Introduction

What Are Petri Nets and What Should
They Be?

A central challenge of computer science is the appropriate con-
struction ofsystemsthat contain IT-based components and that
are embedded in an automated or organizational environment.
Such systems aremodeledso that clients, manufacturers, users,
etc., can, with the help of the model, better understand whata
system is supposed to do and how it can be implemented, used,
varied and improved.

In the past 50 years, a multitude of modeling techniques has
been proposed for such systems. They all have their strengths
and weaknesses, as well as their preferred fields of application,
user groups and tools. Petri nets are among the oldest modeling
techniques of computer science.

For decades now, interesting theoretical questions about
Petri nets have been posed and solved. Special subclasses
have been studied and tools have been developed. Case studies
have been conducted and successful projects have been imple-
mented. In contrast to some other methods, which were fa-
vored for a short time and then forgotten, Petri nets have kept
their place as one of the well-established modeling techniques.
Initially, there was an interest in integrating Petri nets with
other methods. However, over time, this has given way to a
tendency to keep them separate.

With a lively, steadily growing group of interested re-
searchers and users as well as ever-new software tools, for
decades Petri nets have been in the best position to shape some
foreseeable developing lines of computer science and to con-
tribute to novel concepts like “model-based,” “ubiquitous,”
“pervasive” or “disappearing” software engineering. The Petri
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net portalwww.informatik.uni-hamburg.de/TGI/
PetriNets/index.html offers rich material on this.

Carl Adam Petri himself originally designed his approach
even more broadly. He looked for a theory of information pro-
cessing in accord with the laws of physics, with deep-seated
invariants in the traditions of the natural sciences and with
formalisms that would allow for the description of a human-
oriented, pragmatic handling of the technical possibilities of
computer science.

What Does This Book Cover?

The book is divided into three parts. The first part describes
how to use Petri nets for modeling. All concepts are explained
with the help of examples; at first, with different variants of
a cookie vending machine. We use the most powerful, most
generic type of Petri nets for this (with real-world objectsas
“tokens”). It is not until Chapter 3 that we will use the more
specialized and technically simpler type ofelementarysystem
nets with abstract “black” tokens. I chose this order so as to
start with an intuitively very convincing and realistic model.
From there on, I always introduce derived concepts likese-
quentialanddistributed runs,scenariosand additional nota-
tions for elementary system nets first, because they are more
comprehensible this way. The examples are meant to show
that scenarios, in particular, decisively deepen our understand-
ing of a system and deserve special attention. The synthesis
problem, i.e., deriving non-sequential behavior from a descrip-
tion of sequential behavior, can be solved very convincingly
with Petri nets. It is therefore covered in a separate chapter.

The second part introduces techniques with which impor-
tant properties of system nets can be formulated as well as al-
gorithms with which one can prove or disprove their validity.
For easier understanding, some concepts are only introduced
for elementary system nets at first. This second part covers all
essential analysis methods that are specific to Petri nets, par-
ticularly traps, place invariants, transition invariants, covering
graphs and special techniques for free-choice nets. Some read-
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ers may be unfamiliar with the combination of the analytical
power of traps and place invariants, the consistent distinction
between “hot” and “cold” transitions, and the discussion ofrun
properties. Temporal logic and particularly model checking
offer generic analysis techniques, which are also successfully
applied to Petri nets. This book will not explicitly cover such
techniques, because they are not specific to Petri nets. How-
ever, ideas from temporal logic frequently influence this text
implicitly, particularly the distinction between state and run
properties.

The third part presents a selection of three case studies from
very different fields. They show how diversely applicable Petri
net models are. In addition, each case study introduces new,
more generic concepts, properties and analysis techniques, which
are also useful for very different modeling tasks. Among them
are fairness properties, the combination of region theory and
state properties and symbolic schemata for Petri nets.

In summary, the three parts of this book explain:

• Petri nets as a modeling technique,

• the theoretically well-founded analysis of Petri nets,

• case studies from very different areas of application.

Each chapter ends with exercises and recommendations for
further reading. Particularly challenging exercises are marked
with an asterisk. Texts with a colored background focus on
historic or exemplary aspects of the main text. Finally, the
appendix includes a compilation of the formal framework used
throughout this book.

Conclusive Threads

The previous section has already mentioned the special caseof
elementarynets (with “black tokens”). Readers who only wish
to study this type of net can follow theelementary strandof
this book. Figure 1 shows which chapters and sections belong
to this strand.
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Figure 1: The elementary strand

Readers who only wish to study the modeling (but not the
analysis) of systems can follow themodeling strand. This
strand contains all the models of real systems appearing in this
book. Figure 2 outlines the chapters and sections of this strand.

3.2 4.5 7.1 7.6 8.1 9.3 19.1 21 22

1

3.4 4.6

20.1

20.4

Figure 2: The modeling strand

Readers who are interested in technically simple, but chal-
lenging examples and case studies can choose the elementary
models of the modeling strand, shown in Fig. 3.

3.2 7.1 7.6 8.1 19.1 21

3.1

3.4

20.1

20.4

Figure 3: The elementary modeling strand
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How Is the Content Presented?

Pertinent examples and intuitive descriptions often explain the
content sufficiently well. In places where formal arguments
are used, only basic standard notations are employed, for in-
stance, for sets, functions, graphs, vectors, matrices, systems
of equations and propositional logic. Everything beyond that
(for instance, the handling of multisets) is explained in detail.
The area of Petri nets has grown so rapidly that there is not yet
any overall consistent and intuitively appealing terminology.
This text constantly looks for compromises between consis-
tency (identical names for identical things, different names for
different things), intuitive comprehensibility and linguistic cor-
rectness of terms and notations. Some (few) terms are newly
introduced here or are used in a new way. Readers who want
to avoid formalism can still acquire a sufficient understanding
of the content.

The page layout is designed to break up the text. The broad
margin contains examples, annotations and alternative formu-
lations. In detail, this means:

• The margin illustrates the text: the examples and annota-
tions in the margin explain and illustrate the concepts in
the text.

• The text explains the margin: readers who are (somewhat)
familiar with Petri nets can often get along by only looking
at the examples and annotations in the margin. The text
then serves as confirmation and generalization.

Even without an analysis, Petri nets are a very interesting
modeling technique. Chapters 1 and 3 are sufficient to under-
stand the case studies in Part III.

When looking for a particular passage in the text, the reader
can find help in the list of Examples and Case Studies in the
Frontmatter or in the Index at the end of this book. Further in-
formation, feedback from readers and material for classes can
be found at:https://u.hu-berlin.de/understandingpetrinets
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Modeling Techniques





5

This first part is about modeling with Petri nets. In Chap-
ter 1, we start with an example that employs the basic nota-
tions and shows how to use them appropriately. Chapter 2 then
generalizes these notations. The common special case ofele-
mentary system netsis covered in a separate chapter. Finally,
Chap. 4 juxtaposes the concepts ofsequentialanddistributed
runs. Chapter 5 then uses distributed runs to describesce-
narios. Chapter 6 introduces additional notations and shows
which are merely useful abbreviations and which actually in-
crease the expressive power of elementary system nets. Part
I concludes with the solving of thesynthesis problemand the
compositionof nets.





An Example Chapter 1

In this chapter, we will use an example to explain the basic
graphical components of Petri nets and how they can be used
to model discrete systems.

Cookies

a cookie vending machine

1.1 A Cookie Vending Machine

For this introductory example, we describe avending machine
that sells cookies. The machine has acoin slot and acom-
partmentinto which the packets of cookies are dropped. In
the initial state of the cookie vending machine, the coin slot
contains a coin. The cookie compartment is empty.

kies �1

coin slot

�1

place

Figure 1.1 models this as a Petri net:coin slot andcompart-
ment, both depicted as ellipses, are theplacesof the Petri net.
Thecoin slot contains a euro coin, which is atokenof the net
in Fig. 1.1. Thecompartment does not contain any tokens. A
distribution of tokens across places is amarkingof a Petri net.

The machine can now collect the coin and produce a packet
of cookies. In the Petri net in Fig 1.1, this is modeled as a
transition t, depicted as a square (or rectangle).

transition

In Fig. 1.1, the transitiont is enabled, because its incom-
ing arc starts at a place containing a coin token, as requiredby
the arc’s label. Therefore,t canoccurand thereby change the
current marking. Intuitively, this can be understood as a move-
ment or flow of tokens. As the directions and labelings of the
arrows in Fig. 1.1 show, the coin “flows” out of the coin slot,
and a cookie packet “flows” into the compartment. Arrows

coin slot t compartment

�1
�1 Figure 1.1: The cookie

vending machine in its ini-
tial state
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�1

coin slot t compartment

Figure 1.2: The cookie
vending machine after the
occurrence oft

depict thearcsof the net.

arc

Figure 1.2 shows the new marking: The placecoin slot doesCookies

compartment

not contain any tokens, while the placecompartment contains
a cookie packet as a token. In this marking,t cannot occur.

1.2 A Look Inside

Cookies

If we look inside the machine, we will find several components
that store coins and cookie packets and handle the sale. Figure
1.3 in turn models the interior of the vending machine as a Petri
net: there is astorage filled with five cookie packets and one –
initially empty –cash box.

�1

acoin slot

signal

compartmentb

storage

cash box

�1

�1

Figure 1.3: A look inside the cookie vending machine

a – collect coin

b – give out cookie packet

In the marking shown, transitiona can occur. Its effect can
be deduced from the arrows starting or ending ina: the coin
disappears from thecoin slot and appears in thecash box. Si-
multaneously, asignal for transitionb is generated, depicted by
a black dot. Figure 1.4 shows the marking after the occurrence
of a.

Now, transitionb can occur, because the arrows ending in
b are labeled with objects that are actually present in the re-
spective places: a black dot insignal and a cookie packet (even
several) in thestorage. After the occurrence ofb, the marking
shown in Fig. 1.5 is reached. It corresponds to the marking in
Fig. 1.2. No more transitions can occur now.
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�1

acoin slot

signal

compartmentb

storage

cash box�1

�1

Figure 1.4: After the occurrence ofa

�1

acoin slot

signal

compartmentb

storage

cash box

�1

�1

Figure 1.5: After the occurrence ofb

1.3 The Interface

So far, we have modeled the vending machine as aclosed sys-
tem: coins and cookie packets are distributed across places and
the occurrence of transitions redistributes them. What is miss-
ing are actions of the environment: someone inserts a coin, for
example, or takes out a cookie packet. How do we model this?

As Fig. 1.6 shows, a transitioninsert coin sits in front of
the – empty – coin slot.insert coin does not have any precon-
ditions, so it can occur anytime. In the real world, of course,
this action, in fact, does have further preconditions. Mostim-
portantly, the environment has to provide a coin. Likewise,the

�1�1

acoin slotinsert coin

�1�1

acoin slotinsert coin

�1

transitiontake packet models the taking of a packet out of the
compartment.

The two transitionsinsert coin and take packet model the
vending machine’sinterface. Both are enabled in the marking
of Fig. 1.6. Connected with this is the label “ε”, which we will
deal with next.
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�1

�1�1
a signal

compart-
mentb

storage

cash box

take
packet

e

coin slot

e

insert
coin

�1

Figure 1.6: The cookie vending machine with the cold transitions of its
interface

1.4 Hot and Cold Transitions

So far, we have tacitly assumed that an enabled transition isac-
tually going to occur. For the transitionsa andb of the cookie
vending machine, this is appropriate: A coin in the coin slot,
after all, is supposed to generate a signal, which in turn trig-
gers the transport of a cookie packet.a andb arehot transi-
tions. However,insert coin is a different matter. This transition
is enabled in Fig. 1.6, for instance. In the real world, a cus-
tomer triggers this transition by inserting a coin into the coin
slot. Whether or not this will ever happen is not guaranteed.
Therefore, we want to allow thatinsert coin stays forever en-
abled without ever actually occurring. In the model,insert coin
is acold transition. The transitiontake packet is cold as well:
no customer is forced to take his paid-for packet out of the
compartment.

In general, the majority of a system model’s transitions are
hot. Cold transitions are much rarer. As in our example, cold

e

cold transition

transitions are often found at the interface to the unmodeled
environment. To distinguish them from hot transitions, cold
transitions are labeled with “ε” (as an indication of their often
“external” character).

1.5 Runs

A run of a system model describes how transitions occur con-
secutively. A typical runw of the model in Fig. 1.6 starts with
the insertion of a coin. This generates a signal (via transition
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a) which then triggers the release of a packet (transitionb).
A run is completeif it terminates in a marking that does

not enable any hot transitions. The runw described above is
complete, becausew only enables the cold transitionsinsert
coin andtake packet. An initial part ofw that enables one of
the hot transitionsa or b is anincompleterun.

The above runw can be extended bytake packet to form
another – also complete – run. It can also be extended by an-
other occurrence of insert coin. In this case, however,a andb
have to occur once more as well. The description “complete”
is usually omitted. Incomplete runs are discussed only rarely.

The cookie vending machine in Fig. 1.6 has several more
runs apart from the above-mentioned runw. They are formed
by the repeated occurrence of the net’s transitions.

In the marking shown in Fig. 1.6, the first packet can be
taken out of the compartment, the second packet can be dropped
into it and the third coin can be inserted.

smallest example for indepen-

dently occurring transitions

The transitionstake packet, b and insert coin all occur in-
dependently from each other. How the repeated occurrence of
transitions can form one or more runs is discussed in Chap. 4.

1.6 Alternatives

Our cookie vending machine does not accept every coin. Maybe
the machine has a coin verifier that rejects faulty coins. Maybe
the customer can manually eject the coin from the coin slot
by pushing an appropriate button. The vending machine can

coin slot

return coin

�1

�1
a

�1

return a coin to its environment for various reasons. However,
we do not want to model all those details. For us, it is sufficient
to model that a coin in the coin sloteitherreaches the cash box
or is returned to the environment. We do not model why each
alternative occurs. Cookies

Return

Figure 1.7 adds to the cookie vending machine the option
of returning coins. After the insertion of the coin, the marking
in Fig. 1.8 is reached. Now, all preconditions for the occur-
rence ofreturn coin as well asa are met. However, only one
of the two will actually occur: ifa occurs, the coin slot will
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signal
compart-

mentb

storage

cash box

take
packet

e

coin slot

e

return coin

insert
coin

�1

�1 �1

�1
a

Figure 1.7: The cookie vending machine with the option of returning coins

signal
compart-

mentb

storage

cash box

take
packet

e

coin slot

e

return coin

insert
coin

�1

�1 �1

�1
a

�1

Figure 1.8: Two options:return coin anda

lose its token, andreturn coin will no longer be enabled. How-
ever, if return coin occurs,a will no longer be enabled. Both
transitions are inconflictwith each other.

smallest example for a conflict

1.7 Fine Tuning

After five coins have been inserted and five cookie packets
have been given out, the storage is empty and the cash box con-
tains five coins. The sixth inserted coin also reaches the cash
box. It generates a signal which cannot be processed, however,
because there are no more cookie packets in the storage. Fig-
ure 1.9 shows this marking. The sixth customer has paid, but
does not get any cookies!

Therefore, we have to preventa from occurring a sixth time.
The sixth coin always has to be returned to the environment.
For that purpose, the model is expanded as shown in Fig. 1.10.
It now contains an additionalcounter. The counter is modeled
as a place that always contains exactly one token. This tokenis
always a natural number. Initially, this is the number of cookie
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signal
compart-

mentb

storage

cash box

take
packet

e

coin slot

e

return coin

insert
coin

�1

�1 �1

�1
a

1�1�1�1�1�1�

Figure 1.9: Reachable marking of the cookie vending machine

packets in the storage. Every occurrence of the transitiona
reduces its value by one.

x x-1

x   0

a

counter5

>

signal
compart-

mentb

storage

cash box

take
packet

e

coin slot

e

return coin

insert
coin

�1

�1

�1

�1
a

x   0>

x x-1

counter 5

�1

Figure 1.10: Addition of a counter

Technically, we achieve this with the help of aparameter,
x. The preconditions for the occurrence ofa now include an
occurrence mode, that is, the replacing ofx with a concrete
value. From the marking shown in Fig. 1.10 with the occur-
rence modex=5, the marking in Fig. 1.11 is reached.

The labelx>0 in a states an additional precondition for the
occurrence ofa. It will preventa from occurring, if the counter
holds the token “0”.

Finally, we wish to model that the coin slot can contain at
most one coin, and that at most one signal is pending at any
one time. Figure 1.11 models this by means of two additional
places.

With that, we have modeled the essential components of
the cookie vending machine as a Petri net. At the chosen level
of abstraction, all aspects of the vending machine’s structure
and behavior are modeled correctly. What “correctness” means
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signal
compart-

mentb

storage

cash box

take
packet

e

coin slot

e

return coin

insert
coin

�1

�1

�1

�1
a

x   0>

x x-1

counter 4 1�

Figure 1.11: After the occurrence ofa

x x-1

counter 4

signal
compart-

mentb

storage

cash box

no signal

take
packet

e

coin slot

insertion
possible

e

return
coin

insert
coin

�1

�1

�1

x   0>
�1

a

�1

Figure 1.12: At most one coin in the coin slot and at most one signal pend-
ing

here and how correctness is verified are covered in Part II of
this book.

1.8 Diverse Components

The model of the cookie vending machine shows what makes
Petri nets so flexible: we model entirely diverse components
that nevertheless can be expressed and combined with a uni-
form formalism. In the models in Figs. 1.3–1.11, places and
their tokens describe:

• components of a real vending machine:coin slot, cash box,
storage, compartment, with coins and cookie packetsas
tokens;
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• technical components: thecounter with a numberas token
andsignal with a black token representing a pending signal;

• logical abstractions:insertion possible, signal andno sig-
nal with black tokens representing the logical valuetrue.

Transitions describe:

• actions of the vending machine’s interior, modeling the trans-
port of objects and signals:a (accept coin) andb (give out
packet);

• actions of the vending machine’s interface:return coin;

• customer actions allowed by the vending machine, influ-
encing its behavior:insert coin, take packet.

A global state of the cookie vending machine is modeled
as a marking (distribution of tokens across places). One ac-
tion, that is, a change from one state of the vending machine
to a new one, corresponds to a step from one marking to an-
other marking in the model. Several successive actions of the
vending machine correspond to a run of the model.

By modeling all these diverse components with a uniform
formalism, their reciprocal effects can be identified and ana-
lyzed. In that way, the correctness of the entire system and its
effects on the real world can be convincingly verified.
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Exercises

1. How many reachable markings does the system net in Fig. 1.10 have if the placecounter
initially holds the token2 (instead of5)? Based on this result, estimate whether the number
of reachable markings of the unaltered net is greater than orless than 70.

2. In Fig. 1.10, replace the initial marking of the placecounter with (a) 4 or (b) 6. Discuss
what these variations mean intuitively.

3. Model a gambling machine with the following behavior:

Initially, the machine is ready for a game and the player can insert a coin. An inserted coin
reaches the cash box, and the machine changes into a state in which it pays out a coin from
the cash box an arbitrary number of times, which may be zero. At some point, the machine
stops giving out coins (at the latest when the cash box is empty) and becomes ready for
another game.

Further Reading

Someone who models a system does not always immediately think about components that be-
have like places and transitions of a Petri net. Usually, a system is first theoretically broken
down into abstract components, which are later on systematically refined. All modeling tech-
niques based on Petri nets make use of refinement and composition. In connection withcolored
nets [38], hierarchical concepts are introduced. Girault and Valk [29] also recommend a refining
approach in their extensive book on system design with Petrinets. Introductory texts of various
kinds can be found in the anthologies of the latest twoAdvanced Courses on Petri Nets[18],
[70].
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How It Began

In the late 1950s, Carl Adam Petri, at the time a research associate at the Department for In-
strumental Mathematics at the University of Bonn, Germany, thought very pragmatically about
the implementation of recursive functions. After all, for such functions, it is generally not pos-
sible to predict how much space their calculations will consume. If the available resources are
insufficient for a calculation, the data processing system should beexpandable, to continue the
calculation. This is more efficient than starting over with alarger system.

So Petri sought a system architecture that can beexpanded indefinitely. Such an architecture
does not have any central components, most of all no central,synchronizing clock, because
every expansion enlarges the system in space. Connections tothe clock would become longer,
and longer cycles would demand lower clocking frequencies.At some point, the limitations of
the laws of physics would have to be broken in order to furtherexpand the system. Therefore,
such an architecture inevitably has to make do without any synchronizing clocks.

In his famous dissertation “Kommunikation mit Automaten” (Communication with Au-
tomata) [56], Petri shows that it is actually possible to construct such an indefinitely expandable,
asynchronoussystem architecture. It incorporates locally confined components communicating
with each other via local interfaces.

Actions with locally confinedcauses and effects are the central idea of the nets proposed by
Petri in [56]. Termed “Petri nets”, they became one of the most popular concepts of computer
science. Only later did Petri start to use a graphical representation. Thus, the first text on Petri
nets does not contain a single Petri net!





The Basic Concepts Chapter 2

Now we take a little closer look at Petri nets, that is, at their
structure of places, transitions and arcs, the fundamentaldata
structure of multisets, the structure of markings and stepsand
lastly the reachable markings and the final markings. We ex-
plain this with the help of the (slightly modified) cookie vend-
ing machine.

2.1 A Variant of the Cookie Vending Ma-
chine

Figure 2.1 shows a modified version of the cookie vending ma-
chine previously shown in Fig. 1.10 (the denotationsA . . .H of
the places anda . . .e of the transitions make the notation eas-
ier). In addition to the five rectangular cookie packets, two

x-2x

a

E 7

B C

b

H

F

G

d

e

A

D

e

e

c
�1

�1

�1

�1

y,z

y,z y
x   2³

Figure 2.1: Two kinds of packets and giving out two packets atonce

round packets are now in the storageH. The customer receives
two kinds of tokens:

two cookie packets for one euro. The machine decides non-
deterministically whether those packets are rectangular or round.
Bought packets are dropped into the compartmentC. The cus-
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tomer can remove one packet at a time (via the cold transition
d). The net in Fig 2.1 will be used as an example throughout
Chap. 2.

2.2 Components of a Net

The example of the cookie vending machine shows all the kinds
of components that can occur in a Petri net.1 We will look at
them again individually and explain their roles in the modelof
the system.

Places

A Petri net is a structure with two kinds of elements. One kind
of element isplaces. Graphically, a place is represented by
a circle or ellipse. A placep always models apassivecom-
ponent:p can store, accumulate or show things. A place has
discrete states.

Transitions

The second kind of elements of a Petri net aretransitions.
Graphically, a transition is represented by a square or rectan-
gle. A transitiont always models anactivecomponent:t can
produce things, consume, transport or change them.

Arcs

Places and transitions are connected to each other by directed
arcs. Graphically, an arc is represented by an arrow. An arc
never models a system component, but an abstract, sometimes
only notional relation between components such as logical con-
nections, access rights, spatial proximities or immediatelink-
ings.

1The literature gives a multitude of extensions and generalizations,
which are not covered here.
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In the example of the cookie vending machine, it is striking
that an arc never connects two places or two transitions. An
arc rather runs from a place to a transition or vice versa from
a transition to a place. This is neither coincidental nor arbi-
trary, but inevitably follows if nets are used correctly to model
systems, that is, if passive and active components are properly
separated.

Net Structure

It is customary to denote the sets of places, transitions andarcs
with P , T andF , respectively, and to regard arcs as pairs, that
is,F as a relationF ⊆ (P × T ) ∪ (T × P ). Then

tp

arc(p, t)

pt

arc(t,p)

net structure

place

transition

arc

N = (P, T, F )

is anet structure. The places and transitions are theelements
of N . F is theflow relationof N . Figure 2.2 shows the net
structure of the cookie vending machine as shown in Figs. 1.10,
1.11 and 2.1.

bac

e

A

D

E

B

H

F

G

C d

Figure 2.2: The net structure of the cookie vending machine t

t

t

t

t

t

t

t

pre-set•x post-setx•

loop

If a given context unambiguously identifies a netN , the
pre-set•x andpost-setx• of an elementx are defined as

•x =def {y | yFx} and

x• =def {y | xFy}.

Two elementsx, y of N form a loop if x ∈ •y andy ∈ •x.
For instance,a andE in Fig. 2.2 form a loop.
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Markings

A markingis a distribution of tokens across places. A marking
can be represented graphically by symbols serving as tokensin
the respective circles and ellipses. For a system with an initial

tokens in places:

E 7

H

GA �1

state, the initial marking is often depicted in this way. The
symbolic tokens (for instance,�1 , , 7) generally denote ele-
ments of the real world. This correlation is so strong that we
do not distinguish between the symbolic representation andthe
real elements that they denote.

Next to symbolic tokens, abstract black tokens often occur,
for instance, in the placesD andG in Fig. 2.1. Such a token
often indicates that a certain condition (modeled as a place) is
met. It is also possible, and common, to represent concrete
elements not by symbolic but by abstract black tokens.Ele-
mentarynets only utilize black tokens.

Labelings of Arcs and Transitions

Arcs and transitions can be labeled withexpressions. Next to
elements of the real world, which have occurred in markings
before, functions (for instance, a subtraction) and variables (for
instance,x andy) can occur in such expressions. These expres-
sions have a central property: if all variables in an expression
are replaced by elements, it becomes possible to evaluate the
expression in order to obtain yet another element. It is conve-

labelings of arcs:

x x-2

�1

y,z

y

nient to write the labeling of an arc(p, t) or (t, p) as

labeling pt or tp (1)

respectively. Statement (1) describes the tokens that “flow
through the arc” at the occurrence oft.

The variables in these expressions areparametersdescribing
labeling of a transition:

x   2³

different instances (“modes”) of a transition. Such a transi-
tion can only occur if its labeling evaluates to the logical value
“true”. The rest of this chapter describes this correlationin
more detail.
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2.3 The Data Structure for Petri Nets:
Multisets

In a Petri net, the tokens of a place often represent objects
that we usually do not want to distinguish. For instance, we
are only interested in the number of coins in the cash box (al-
though we could, for instance, distinguish them by their date
of coining).

In general, examples of differentkinds of tokensare mixed
in a place, e.g., rectangular and round cookie packets in the
storageH. They form amultiseta, formally a mapping multiset

H

a of H:

a( ) = 3
a( ) = 2
a(u) = 0, for any otheru

a : U → N

that maps every kindu of a universeU to the number of its
occurrences ina.

We always assume a “sufficiently large” universeU that

setM(U) of all multisets

the universe of the cookie
vending machine:

, , �1 ,0,1,2,3,4,5,6,7, •

finite multiset

contains all examined kinds of tokens. We write the set of all
multisets overU as

M(U) orM for short

if the context unambiguously identifies the universeU .
The universeU can contain an infinite number of elements,

for instance, all natural numbers. A multiseta overU can map
the valuea(u) = 0 to almost allu ∈ U . That means thatu
does not occur ina. Thus,a is finite if

a(u) 6= 0 for only a finite number ofu ∈ U.

We write a finite multiseta with its multiple elements in square finite multiset:

[ , , , , ]

a( ) = 3, a( ) = 2

brackets[. . .]. Consequently, theemptymultiset is denoted by
[ ]:

empty multiset[ ]

sum of multisets

order on multisets

[ ](u) = 0 for eachu ∈ U.

Multisetsa, b ∈ M can be added: for eachu ∈ U , let

(a+ b)(u) =def a(u) + b(u).

They can be compared:

a ≤ b iff for each u ∈ U : a(u) ≤ b(u),
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and b can be subtracted from a ifb ≤ a:

(a− b)(u) =def a(u)− b(u).

With these notations, we describe dynamic behavior.

subtraction on multisets

arithmetic operations on
multisets:

[ , ] + [ ] = [ , , ]

[ , ] ≤ [ , , ]

a ≤ a

[ , , ]−[ ] = [ , ]

a− a = [ ]

The tokens of a placep usually belong to atype, that is, to
a (small) subset of the universeU . In Fig. 2.1, for instance,
only coins lie in the placesA andF, only black tokens inD and
G, only cookie packets inH andC and only numbers inE. If a
placep only holds tokens of typeτ , the typeτ is assigned to
the placep.

2.4 Markings as Multisets

Now we can precisely define the termmarking: A markingM
of a net structure(P, T, F ) is a mapping

marking

Initial markingM0 of Fig. 2.1:

M0(H) =
[ , , , , , , ]

M0(A) = M0(B) = M0(C) =
[ ]

M0(D) = M0(G) = [ • ]

M0(E) = [7]

M : P → M.

That means thatM maps every placep to a multisetM(p). As
explained in Sect. 2.2, a markingM describes astateof the
modeled system. Given the significance of a system’s initial
state, the initial marking (usually denotedM0) is often drawn
into the respective net structure.

2.5 Steps with Constant Arc Labelings

Let us now examine the special case in which the arcs around
a transitiont are labeled with individual elements of a uni-
verse. This applies to the arcs around the transitionsc ande in

A

D

e

e

c
�1

�1

Fig. 2.1. In general, however, an arc is labeled with more than
one element. Formally, this is a multiset, whose brackets [ and
] are not written in order to save space. Thus, with the notation
of (1), for each arc(p, t) or (t, p) the following holds:

t

,

p

q

pt = [ ]

qt = [ , ]

pt ∈ M and tp ∈ M.

We technically expand this notation for all placesp and transi-
tionst by

pt = [ ] and tp = [ ]
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if no arc(p, t) or (t, p) exists, respectively.
A transitiont canoccur in a markingM if the related pre-

t

,

t is enabled

conditions are met, that is ifM enablesthe transitiont.
As in many other system models, we separate theenabling

of t from the effect of theoccurrenceof t. Whether a marking

the first step of the cookie
vending machine:

A

D

ec
�1

c
−→

A

D

ec
�1

�1

formal:

M0

c
−→ M1

M1(D) = [ ],M1(A) = [ �1 ]
M1(p) = M0(p), for any other placep

M enables a transitiont depends on the labelings of the arcs
ending int. M enablest if and only if

M(p) ≥ pt

for each arc(p, t). Thus, the initial marking of the cookie vend-
ing machine only enables the transitionc.

If a markingM enables a transitiont, it results in thestep

M
t

−→ M ′,

in which the markingM ′ of each placep is defined as

M ′(p) =def M(p)− pt+ tp.

2.6 Steps with Variable Arc Labelings

An arc or a transition can be labeled with an expressiona that
contains variables. By assigning values to the variables ina,
the expressiona can be evaluated. Ifa is written onto an arc, expression

transition condition

arc labeling

the result is a multiset. Ifa is written into a transition, the result
is either“true” or “false” . In order to calculate these values,
the labelings of all arcs that end or start at a transition (the arcs
aroundt) have to be taken into account simultaneously.

Put a little more technically: Letx1, . . . , xn be the variables
of the arc labelings around a transitiont. Let u1, . . . , un be
elements of the universe. Then

x-2x

b

x   2³

a
y,z

y,z

β : (x1 = u1, x2 = u2, . . . , xn = un)

is a modeof t. In Fig. 2.1, for instance, the variablesy and

mode of a transition
z occur in the arc labelings around the transitionb. Thus,
β1 : (y = , z = ) is a mode of b. The transitionb has three
additional modes:β2 : (y = , z = ), β3 : (y = z = )
andβ4 : (y = z = ). A modeβ of a transitiont creates



26 The Basic Concepts

for each arc(p, t) or (t, p) a multisetβ(p, t) or β(t, p), respec-
tively. Thus, in Fig. 2.1,β1(H, b) = β2(H, b) = [ , ]. An-
other example isβ : (x = 7), a mode of the transitiont in
Fig. 2.1, and it holds:β(a,E) = [7− 2] = [5].

modeβ of the transitionsa andb:

β(x) = 5, β(y) = , β(z) =

results in the constant arc labelings

35

b

x   2³

a

,

,

x

If pt does not contain any variables, then obviously

β(p, t) = pt.

A transitiont can itself have a labeling that contains vari-
ables. An example is the labelingx ≥ 2 of transitiona in
Fig. 2.1. For such a labelingi, a modeβ of t creates a logi-
cal value,β(i). For instance, for the labelingx ≥ 2 of a, the
modeβ1 : (x = 7) creates the logical valueβ1(x ≥ 2) = [7 ≥
2] = true.

Thus, a modeβ of t creates multisets at the arcs around
t. A step oft in the modeβ is then defined as described in
the previous section. Additionally, the labelinga of t has to
evaluate toβ(a) = true. For a step fromM to M ′ via t in the
modeβ, we writestep

M
t,β
−→ M ′.

The symbolβ for the mode is often omitted and we write,
for instance

x = 5 instead ofβ : (x = 5).

Put in a formal context, a markingM enables a transitiont inM enablest in modeβ

the modeβ of t if for each arch in the form(p, t):

M(p) ≥ β(p, t)

and for the labelingi of t:

β(i) = true.

This then results in the stepM
t,β
−→ M ′, in whichM ′ for each

placep is defined by

M ′(p) = M(p)− β(p, t) + β(t, p).

Again, letβ(p, t) = [ ] andβ(t, p) = [ ] if no arc(p, t) or (t, p)
exists inN , respectively.
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�1

a,x=7
−→ x-2x

E 5

B

F

G

A

D �1

x   2³
�1

a

�1

Figure 2.3: StepM1

a,x=7
−→ M2

Consider the cookie vending machine in Fig. 2.1: After the

stepM0
c

−→ M1, the markingM1 enables the transitiona in
the modex = 7, and in no other mode. Figure 2.3 shows the
effect that the step

M1
a,x=7
−→ M2

has on the surroundings of the transitiona. The markingM2,

x   2³

a

for β(x) = 7: conditionx ≥ 2

is met!

which is then reached, enables the transitionb, because now,
values can be assigned to the variablesy andz. Every assign-
ment of or to these variables enablesb. Thus, there exists
a selection of four modes and hence four steps inM2, as out-
lined in Fig. 2.4.

c
�1

c has only one mode

B

b

H

y,z

y,z

M
2

M
4

b, y =

z =

M
4z =

b, y =

M
3

b, y = z =

M
5

b, y = z =

Figure 2.4:M2 enablesb in four modes

2.7 System Nets

We have now assembled the principal notations that enable us
to describe a discrete, dynamic system, as for instance a cookie
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vending machine. According to the principles in Section 2.2,
we use an appropriately labeled, finite net structure,N , to do
this. A central term is that ofa marking ofN , that is, a distri-
bution of tokens (multisets) across the places ofN . Typically,
the initial marking of N is denoted byM0 and is explicitly
drawn intoN . M0 describes the initial state of the modeled
system. A transitiont can be labeled with aconditionand the
arcs aroundt with expressions. These labelings show the vari-
ous situations (modes) in whicht is enabled, and the respective
effects at the occurrence oft. Lastly, every transition is eithercold transition

hot or cold, where cold transitions are indicated by “ε”.
A net structure together with an initial marking, transition

conditions, arc labelings and cold transitions form asystem net.

system net System nets are used to model real, discretely changeable
systems. Each place of a system net models a state compo-
nent of the system and each currently existing token in a place
models a currently given, but changeable, characteristic of that
component. Each transition of a system net represents an ac-
tion of the system. The occurrence of a transition describes
the occurrence of the respective action. If, in doing so, a to-
ken reaches or leaves a place, the action respectively creates or
terminates the corresponding characteristic of the state compo-
nent.

2.8 Marking Graph

For a system netN and an initial markingM0, a markingM
of N is reachableif there exists a sequence of stepsreachable marking

M0
t1,β1

−→ M1
t2,β2

−→ . . .
tn,βn
−→ Mn

with Mn = M . In general, infinitely many markings ofN
are reachable. The reachable markings and steps of a system
net N can be compiled into themarking graph ofN . Itsmarking graph

nodes are the reachable markings, its edges the steps between
the reachable markings ofN . The initial markingM0 of N
is specifically highlighted. The marking graph is also often
called thereachability graph. Figure 2.5 shows an initial part



2.9. Final Markings 29
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Figure 2.5: Initial part of the marking graph for the system net in Fig. 2.1

of the marking graph for the system net in Fig. 2.1. The com-
plete marking graph has approximately100 nodes. In contrast
to the system net in Fig. 2.1, it would be extremely laborious
and counterintuitive to use the marking graph as a model for
the cookie vending machine. In principle, the marking graph
of a system net is a suitable starting point for its (automated)
analysis, as long as only a finite number of markings are reach-
able.

2.9 Final Markings

final markingA system has reached a final state if it can remain in this state
forever. The marking of the system net in Fig. 1.9 models such
a state, in contrast to Fig. 1.10 and Fig. 1.11. A final state of

a final marking:
e

not a final marking:

a system corresponds to afinal marking. In such a marking,
no hot transitions are enabled. For instance, in the system net
in Fig. 2.1, the initial marking is, at the same time, also a final
marking (it only enables the cold transitionc).
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Exercises

1. The system net in Fig. 2.6 expands the cookie vending machine in Fig. 2.1 by a transition
f. In your own words, describe the effect and the function off inside the cookie vending
machine.
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Figure 2.6: Expansion of the cookie vending machine in Fig. 2.1 by a transitionf

2. Which of the markingsM0, . . . ,M8 in the marking graph in Fig. 2.5 are final markings?

Further Reading

In the first two chapters of this book, we break with traditionin introducing the field of Petri nets.
Usually, one begins with the technically simple case of a single kind of “black” token, a case
we will not cover until the next chapter. Instead we have immediately introduced “individual”
tokens, because they are intuitively more comprehensible,more realistic and more accurate. The
price for this is a complex step rule. For such nets, the literature gives many more, ultimately
equally expressive, representations. Widely used is a version of Petri nets calledcolored nets
[38]. They emphasize the semantics of functions over multisets. Girault and Valk [29] also use
such nets.

As is often traditional in mathematics, we do not always distinguish objects and functions
from their symbolic representations in expressions, equations, etc. Our distinction between hot
and cold transitions is found only sporadically in the literature on Petri nets. Damm and Harel
used it inLive Sequence Charts[35] as a very apt way of expressing system specifications.

In the historical development, Genrich and Lautenbach [28]introduced nets withindividual
tokens aspredicate/transition netsand in doing so emphasized the connection with logic.
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A Universal, Expandable Architecture

In his dissertation, Petri designed a universal computer architecture that can be expanded an
arbitrary number of times. We will explain this idea using the example of a finite, but infinitely
expandable stack. It consists of a sequenceA0 . . . An of modules, where each moduleAi (i =
0, . . . , n) has anidle statethat stores either a value or – e.g., initially – a “dummy”⊥. The net

push

pop

idle state1

a0 a1

b0 b1

^

x

x1 x0

(x1,x0) (x1,x0)

x

e

e

shows the moduleA0 with its interface to the environment: The transitionpush accepts a value
from the environment via the variablex0, which may hold any value. The variablex1 holds the
previously stored value, which is passed on to the moduleA1 via the transitiona1. The transition
pop extracts the value stored inidle state. Via b1 the module then receives the value stored in
A1. The net

push

pop

idle state1 idle state2 idle state3 idle state4

a0 a1 a2 a3 a4

b0 b1 b2 b3 b4

^

x

x1 x0

(x1,x0) (x1,x0)

^

x

x2 x1

(x2,x1) (x2,x1)

^

x

x3 x2

(x3,x2) (x3,x2)

^

x

x4 x3

(x4,x3) (x4,x3)

x x x ^

e

e

combines four modules to form a stack. Each moduleAi behaves according to the pattern
described forA0. Each occurrence ofpush or pop triggers a wave that moves from left to
right through the stack. It ends inA4 by popping out the previously stored value or pushing in
a “dummy” ⊥ respectively. The transitionsa4 andb4 are the extension points where another
moduleA5 can be attached.





Common Special Case:
Elementary System Nets

Chapter 3

Petri nets can be used to describe how the control flow and
data flow of a distributed algorithm or system interact. How-
ever, one often merely wants to express where a control flow
currently stands, whether resources are available, how many
messages are pending, etc.

For such an abstract view, it is not necessary to distinguish
several kinds of tokens: only “black dots” are used as tokens
(such tokens already occurred in the cookie vending machine).

Whenever a transition occurs, “exactly one black token flows
through each adjacent arc”. Because this does not have to be

instead of
explicitly stated, the arcs do not have any labelings. Such sys-
tem nets are calledelementary.

Important aspects of distributed and reactive systems can
be modeled appropriately with elementary system nets. We
will show this with three examples: an abstract variant of the
cookie vending machine, the problem of mutual exclusion, and
the crosstalk algorithm.

3.1 Elementary System Nets

elementary system netAn elementary system netN consists of a net structureN =
(P, T, F ) with finite setsP andT of places and transitions, and
an initial marking,M0 : P → N. Some transitions are marked
ascold (via the inscriptionε). Each marking has the form

p
M(p) = 3

M(p) ∈ N not to be con-

fused with M(p) : U → N for

generic system nets!

M : P → N.

Each placep holdsM(p) tokens.
The step rule of elementary system nets follows from the

step rule of generic system nets: A markingM enablesa tran-
sitiont if M(p) ≥ 1 for each placep ∈ •t. For a stepM

t
−→ M ′
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the following holds:

M ′(p) =





M(p)− 1 if p ∈ •t and p 6∈ t•

M(p) + 1 if p ∈ t• and p 6∈ •t
M(p) otherwise

t

t
−→

t

For an elementary system netN it follows from Sects. 2.8
and 2.9 that:

• the step sequences

M0
t1−→ M1

t2−→ . . .
tn−→ Mn

that start with the initial markingM0 contain thereachable
markings and steps,

• the marking graphof N has as nodes the reachable mar-
kings and as edges the reachable steps ofN ,

• afinal markingof N does not enable any hot transitions.

3.2 An Abstract Model of the Cookie
Vending Machine

Figure 3.1 shows an abstract variant of the model of the cookie
vending machine in Fig. 1.11: it does not model euro coins and
cookie packets anymore, only their respective amounts. Each

counter

signal
compart-

ment

storage

cash box

no signal

take
packet

e

coin slot

insertion
possible

e

return
coin

insert
coin a b

Figure 3.1: Abstract variant of Fig. 1.11
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coin and each packet is represented by a black token, just like
a pending (or not pending) signal, or the possibility to insert
a coin. The current value of the counter is represented by the
corresponding amount of black tokens.

This kind of abstraction of concrete objects simplifies the
formal analysis of the model.

3.3 Mutual Exclusion

When it comes to distributed algorithms, the synchronization
of actions is often crucial: an action can occur if certain condi-
tions are met or certain local states are reached. It is reasonable
to model such a condition or state as a place. This place con-
tains a (black) token if and only if the respective conditionis
met or the respective local state is reached. Models of mutual
exclusion are typical examples of this.

In the field of distributed systems, the problem of mutual ex-
clusion manifests itself in a variety of contexts. The simplest
case deals with the interaction of two processes and a (scarce)
resource that each process occasionally uses. Examples are
software processes occasionally using a printer, or vehicles oc-
casionally passing through a traffic bottleneck. At the coreof
this lies the demand that the two processes never use the scarce
resource at the same time.

Figure 3.2 shows the essential components: Each of the two
processesl and r (denotingleft and right) can cycle through
three states,local, waiting andcritical. In its local state, a pro-

critical

waiting

local

critical

waiting

local

key

a

b

c

e

d

f

e el

l

l

r

r

r

Figure 3.2: Mutual exclusion
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cess works without the scarce resource. Via the step towaiting
(transitiona or d, respectively), the process announces its in-
terest in the scarce resource.

The transitionsa andd are cold. Hence, a process is not
obliged to execute this step. From some point forward, it may
only work locally. The step fromwaiting to critical (transition
b or e, respectively) additionally requires a token inkey. The
purpose of this is obvious: in itscritical state, a process, for
instancel, uses the scarce resource.l only reaches this state
(via b) by means of thekey. However, then the other process
(in this caser) cannot reach its critical state viae, because the
key is not available anymore. The processl does not return the
key until l leaves its critical state viac.

Betweenb and e, a conflict can arise an infinite number
of times. No strategy has been modeled to solve this conflict.
Because of this, all conceivable occurrence frequencies andse-
quences are possible. In an extreme case, the conflict will al-
ways be resolved in favor of the same process (for instance, in
favor of l). Then the other process (in this caser) never reaches
its critical state and instead remainswaiting forever. In general,
one wants to guarantee that everywaiting process will eventu-
ally becomecritical. This problem is covered in Chapter 20.

Figure 3.3 shows a solution that is not very convincing:
starting withr, both processes can alternately reach their cri-
tical state. By remaining in its local state, one process can thus
prevent the other from repeatedly reaching its critical state.

e ecritical

local

waiting

critical

local

waiting

key from   to

key from   to

l

l

l

l

lr

r

r

r

r

Figure 3.3: Processes reach their critical states alternately
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3.4 The Crosstalk Algorithm

The crosstalk algorithmassumes twoagentscommunicating
with each other via a technical channel. The channel works
reliably as long as it transmits onlyonemessage. However, as
soon as both agents’ messages collide on the channel,crosstalk
occurs, which may result in corrupted messages reaching their
respective recipients. Since both agents can send messagesin-
dependently from one another, crosstalk cannot be prevented.
However, the algorithm allows both agents to recognize cross-
talk. In that case they could, for instance, repeat their messages
in a predetermined order. We will now introduce an algorithm
that works incycles: during each cycle, either one agent suc-
cessfully sends a message to the other, or both agents recognize
crosstalk.

Chapter 5 will show thatscenariosstructure the algorithm
and increase its comprehensibility. Chapter 12 will containa
proof that both agents correctly implement the cyclic behavior.

Messages from Left to Right

finish

waiting

send

idlel idler

return

replied
confirmed

sent

e reply

Figure 3.4: Sender and recipient

Figure 3.4 shows how theleft agent can leave its initial state
idlel via send. In doing so, it sends a message (sent) and en-
ters awaiting state. After having received a confirmation (con-
firmed), it ends its cycle viafinish.

The right agent leaves its initial stateidler via reply and in
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doing so confirms (confirmed) the messagesent by the left
agent. It ends its cycle viareturn.

Messages in Both Directions

finish

waiting

send

idlel idler

return

replied
confirmed

sent

e

e

sent

confirmed

return

send

waiting

finish

reply
l

l

l

l

l

l

l

l

r

r

r

r

r

r

r

r

reply

replied

Figure 3.5: Symmetrical complement: deadlock possible

We now complement the system symmetrically so that the
right agent can also send a message to the left agent. Figure 3.5
shows this symmetrical complement. However, the system en-
ters a deadlock (both agentswaiting) if bothagents send a mes-
sage during the same cycle.

Luckily, each agent can recognize a deadlock: it expects a
confirmation (confirmed) but receives a message (sent). There-
fore, each agent can resolve the deadlock via an additional
transitioncrosstalk, as Fig. 3.6 shows.

Preventing Errors

The system in Fig. 3.6 is still faulty. It is, for instance, possible
for the left agent to send a message (sendl), which is correctly
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cross-
 talk

cross-
 talk

l r

reply

reply

Figure 3.6: With crosstalk: errors possible

received and confirmed by the right agent viareplyr. The right
agent then returns to its initial state and sends a message via
sendr. Now the left agent finds a confirmation (confirmedr)
alongside a new message (sentr), which it cannot identify as
already belonging to the next turn. Instead, it falsely recog-
nizes crosstalk.

Figure 3.7 solves the problem by adding another message
type (finished). This system is actually correct – what that
means exactly is covered in Chapter 12.

Figure 3.7 showssendl andsendr as cold transitions: no
agent is obliged to send a message. A sent message, however,
has to be processed completely. If the system terminates, both
agents have returned to their respective initial stateidle.

3.5 1-Bounded Elementary System Nets

Except for the net in Fig. 3.1, all elementary system nets in this
chapter can only reach markings in which each place holds at
most one token. Also, it is often convenient to conceive of
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Figure 3.7: The crosstalk algorithm

a token as “moving” through a part of the net, for instance
through the three local states of the left (or right) processin
the system of mutual exclusion. Such system nets have special
properties and analysis methods, which we will cover later on.
These nets are so important that they deserve a special name:
an elementary system netN is called1-boundedif for each
reachable markingM and each placep of N :

1-bounded elementary
system net

M(p) ≤ 1.

The elementary system nets in Figures 3.2 through 3.7 are all
1-bounded; the system net in Fig. 3.1, obviously, is not.

A markingM of a 1-bounded elementary system net can be
described as a string of marked places. For instance,ADE (or
DAE, DEA, etc.) describes the initial marking of the system of
mutual exclusion according to the notation in Fig. 3.8. Two

steps begin with this marking:ADE
c
−→ BDE andADE

d
−→ ADF.
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C

B

A

G

F

E

D

a

b

c

e

d

f

Figure 3.8: Mutual exclusion with symbolic denotations
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Exercises

1. Add to the system net in Fig. 3.2 a placenoncriticall that holds a token if and only if process
l is not in the statecriticall.

2. Construct the marking graphs for the system of mutual exclusion and the crosstalk algorithm
using the denotations given in Figs. 3.8 and 3.9.
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Figure 3.9: The crosstalk algortihm from Fig. 3.8 with symbolic denotations

Further Reading

In many, especially older, publications, elementary system nets – treated as “the Petri nets” –
constitute the central formalism. Much attention is paid toplaces that accumulate unboundedly
many tokens. After theThird Advanced Course on Petri Netsin 1998, a team of authors com-
piled a set of lectures on the rich theory of elementary system nets [70]. A uniform description
is given by Priese and Wimmel [61]. In practice, places with unboundedly many tokens are
needed only rarely.



3.5. 1-Bounded Elementary System Nets 43

Visual Formalisms

Someone who wants to illustrate abstract constructs and relations often uses sketches, diagrams
or other graphical notations. Even in the early days of computer science, finite state machines
were already modeled as graphs, and programs as flow charts. In the early 1960s, Petri’s pro-
posal to represent formal models primarily graphically rather than textually was nevertheless
unusual.

Since the advent of state charts in the mid-1980s and of UML inthe 1990s, visual formalisms
have become established for other modeling techniques as well.

The graphical primitives of Petri nets, that is, the depiction of passive and active components
as round and rectangular shapes, as well as the representation of causal relations and dynami-
cally changeable objects as arrows and “tokens”, have stoodthe test of time. They have, in part,
been adopted by the UML community.





Sequential and Distributed
Runs

Chapter 4

This chapter covers the question of how to formulate individ-
ual runs (e.g.,calculations, behaviors) of distributed, reactive
systems, and what insights into a system such runs can provide.

At first, we will examine the very intuitive term of asequen-
tial run of a system net.Distributed runsrequire slightly more
effort in understanding, but also describe the behavior more
accurately. They form the basis for the concept ofscenarios,
which is covered in the next chapter.

4.1 Sequential Runs

Figure 4.1 shows a technical example of an elementary system
netN . The initial markingAC enables the three transitionsa,
c andd. Hence, there are three steps starting inAC:

AC
a

−→ BC, AC
c

−→ D and AC
d

−→ AE.

We can formulate a run of the system netN as a sequence
of steps, starting with the initial markingM0. Typical runs for
N in Fig. 4.1 are

AC
a

−→ BC
b

−→ AC
c

−→ D (1)

B A c d

a

b C

D E

e

Figure 4.1: System netN
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and

AC
d

−→ AE
a

−→ BE. (2)

finite sequential run

M0

↓ c
M1

↓ a; x = 5
M2

↓ b; y = z =
M3

↓ d; y =
...

sequential run of the cookie

vending machine in Fig. 2.1

The order ofd anda in (2) is arbitrary. We could also have
chosen

AC
a

−→ BC
d

−→ BE.

We define asequential runof a system netN as a sequence

M0
t1−→ M1

t2−→ . . .

of steps ofN , starting with the initial markingM0 of N . A
run can be finite or infinite. In Fig. 4.1, the system netN has
infinitely many infinite sequential runs, for instance

AC
d

−→ AE
a

−→ BE
b

−→ AE
a

−→ · · · . (3)

In general, we are interested incompleteruns: A finite run

M0
t1−→ M1

t2−→ . . .
tn−→ Mn

is completeif Mn is a final marking, that is, ifMn does not
enable any hot transitions. Thus, the runs (1) and (2) are com-
plete. Every run ending inBE is indeed complete, but can
nevertheless be extended.

infinite sequential run An infinite run is complete if at no point a step with an addi-
tional transition can be inserted. The run (3) is complete. The
run

AC
a

−→ BC
b

−→ AC
a

−→ . . .

is incomplete: a step with an additional transitiond can be
inserted at any point.

As explained in Sect. 2.8, it is possible to compile the steps
of a system net into a marking graph. Figure 4.2 gives the
marking graph of the system netN shown in Fig. 4.1. An
additional arrow indicates the initial markingAD. The dashed
circles indicate the final markingsD andBE. Each sequential
run of a system netN is a path through the marking graphG of
N . Vice versa, each path throughG that starts with the initial
markingM0 of N is an sequential run ofN .



4.2. Tokens as Labeled Places 47

AC

BC

D

AE

BE

c

d

d

a

a

b

b

Figure 4.2: Marking graph
of Fig. 4.1

4.2 Tokens as Labeled Places

Next to the representation of a run as a sequence of steps, there
exists the representation as a labeled net with a special struc-
ture, calleddistributedrun. These runs are based on the idea
of representing each occurrence of a token in a place as an in-
dividual, labeled place. For a placep of an elementary system
net, this means:

p represents p .

The labeled placesA and C , for instance, represent tokens in
the pre-set of the transitionc in Fig. 4.1. For the initial marking
of the cookie vending machine shown in Fig. 3.1, we use 12
places: five are respectively labeled withstorage andcounter,
one withinsertion possible, and one withno signal. Likewise,
for a generic system net, tokensu1, . . . , un in a placep are
represented byn correspondingly labeled places:

p   u1 , . . . , p   un represent u1,..., un p

For the initial marking of the cookie vending machine shown
in Fig. 2.1, for instance, a total of ten places is used: five of
which take the form H , two the form H and one each
the form D , G and E  7 .

4.3 Actions

actionA distributed run consists ofactions. An action describes the
occurrence of a transition, especially its effect on the tokens
involved. Technically, an actionA is a loop-free, labeled net
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with exactly one transition. The net structure ofA thus takes
the form:

. 
. 
.

. 
. 
.

A representsa transitiont of an elementary system net if:

• the transitiona of A is labeled witht,

• •a represents the tokens in•t,

• a• represents the tokens int•.

Exemplary and in graphical notation:

t

sp

r r

q represents

t

s

p

q

r

Figure 4.3 shows all actions of the mutual exclusion system
shown in Fig. 3.8.

Na : A a B Nb :

D

B b C

Nc :

D

C c A Nd : E d F

Ne :

D

F e G Nf :

D

G f E

Figure 4.3: The six actions of the mutual exclusion system

For a generic system netN , an actionA representsa transi-
tion ofN in the modeβ if:
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• the transitiona of A is labeled with(t, β),

• •a represents the tokensβ(p, t) for eachp ∈ •t,

• a• represents the tokensβ(t, q) for eachq ∈ t•.

As an example, consider the transitionb in Fig. 2.1 in the mode
β with β(y) = andβ(z) = . Then the following holds:

b
y=
z=

H

H

B

C

C

G

represents
B Cb

H

G

y,z

y,z in the modeβ.

4.4 Distributed Runs

A distributed run consists of actions that are assembled in an
acyclic fashion. Thus, the basis for a distributed run is acausal
net.

causal net

A causal netK = (P, T, F ) has the following characteris-
tics:

• no place branches: at each place, at mostonearc starts or
ends, respectively;

• no sequence of arcs forms a loop: for each sequence of the
form

k0Fk1 . . . kn−1Fkn

thus:k0 6= kn;

• each sequence of arcs has a first element: thus, there exists
no string that “starts in infinity” and takes the form

. . . kFk′.
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The places without an incoming arc form theoutsetof K.
The places without an outgoing arc form theend. We denote
the outset and end by◦K andK◦, respectively.

In contrast to a system net, a causal net can very well have
infinitely many elements.

A distributed runof a system netN is a labeled causal net
K in which each transitiont, together with•t and t•, forms
an action ofN . K thus describes an uninterrupted part of the
behavior ofN .

places in the

outset:

end:

distributed run

Figure 4.4 shows a distributed run of the mutual exclusion
system, employing each of the actions shown in Fig. 4.3 ex-
actly once.

The upper chain of arcs consists of the actionsNa, Nb and
Nc (see Fig. 4.3) and describes a cycle of the left process from
its initial stateA to B andC and back toA. Likewise, the lower
chain of arcs describes a cycle of the right process fromE to F
andG and back toE.

C

B

A

G

F

E

D

b

c

e

d

f

e e

A a B

D

b C

D

c A

E d F e G

D

f E

Figure 4.4: Distributed run of the mutual exclusion system

In general, a chain of arcs from an elementx to an element
y intuitively describes thatx causally precedesy. The (three)
occurrences ofD in Fig. 4.4 are in accordance with this: the
key is first used by the left process (viab andc), then by the
right one (viae andf) and is again available at the end of the
run. Thus, the actionsNa, Nb, Nc andNd causally precede
Ne.

On the other hand,Na andNd are not linked by a chain of
arcs: they arecausally independentfrom each other. This also
holds forNc andNd.

An action can, of course, occur repeatedly in a distributed
run. Figure 4.5 expands Fig. 4.4 by another cycle of the left
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process, using additional instances of the actionsNa, Nb and
Nc.

A a B b C c A

D

E d F e G f E

a b C c A

D

B

D D

Figure 4.5: Expansion of the distributed run in Fig. 4.4

In general, a distributed run can be infinitely long – just
as a sequential run. Figure 4.6 outlines a run of the mutual
exclusion system in which, at first, the left process becomes
critical. Then it remains in its local stateA forever, and the
right process executes its cycle infinitely often.

A a B b C c A

D

E d F e G f E

D D

d F e ...

Figure 4.6: Firstl once, thenr infinitely often

complete distributed run
A distributed runK of a system netN is completeif and

only if its outset◦K represents the initial state ofN and its end
K◦ does not enable any hot transitions. For convenience, we
will omit the attribute “complete.” Unless noted otherwise, for
the rest of this book, with “distributed run” we always mean
“completedistributed run.”

The endN◦ of a finite distributed run of a system netN
represents a final state ofN . The end of an infinite run, in
general, does not represent a reachable state. The end of the
run in Fig. 4.6, for instance, consists of only a single place
(labeledA).

Figure 4.7 shows a partial distributed run of the cookie vend-
ing machine shown in Fig. 2.1. The run describes exactly one
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cD A a
x = 7

G

E  7

b
y=
z=

H

H

d
y=

d
y=

B

E  6

F

D

C

C

G

�1

�1

Figure 4.7: A partial distributed run of the cookie vending machine shown
in Fig. 2.1

sale, from the insertion of the coin until the withdrawal of two
cookie packets.

Figure 4.8 outlines the two finite and the – only – infinite
distributed sequence of the elementary system net shown in
Fig. 4.1.

A a B b A
c

...

A B b A

C d E

C

a A
D

a a

b

... Ab a B

A B b A

C d E

a a ...

{
{

{

Figure 4.8: The many finite and the one infinite run to Fig. 4.1
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4.5 Example: A Bell Clock

Figure 4.9 shows a minute clock: A counter is repeatedly in-
cremented by1 and reset to0 after60 increments. The place
p always holds exactly one token, a natural number between
0 and59. Starting with58, the transitiont always increments
this number by1, until it is set from59 to 0.

actions of the minute clock

58

p t

x=58 59

p

59

p
u

0

p

0

p t

x=0 1

p

p

x

x+1

59

0 ut

x   59 58¹

Figure 4.9: The minute clock

For a system net with such a simple structure, the distributed
runs resemble the sequential runs. The net in Fig. 4.9 has ex-
actly one distributed run:

58

p t

x=58 59

p
u

0

p t

x=0

t

x=58 59

p
u

0

p

Figure 4.10 adds bells to the minute clock, which will start
chiming at the beginning of every new hour (transitionu). The
end of the bell chimes is not linked to the clock. Figure 4.10
only specifies that the chimes have stopped (transitionv) be-
fore the next full hour. The transitionst andv occur indepen-
dently from each other. This is also shown by the bell clock’s
– only – distributed run in Fig. 4.11.

p

x

x+1

59

0 ut v

off

on

x   59 58¹

Figure 4.10:
The bell clock

58

p t

x=58 59

p

u

0

p t

x=58 59

p

0

p

off on v off on v

u

t

x=0

Figure 4.11: Run of the bell clock
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4.6 The Kindergarten Game

Thekindergarten gameis the distributed version of a program
used by Dijkstra [20] to demonstrate the use of formal verifica-
tion techniques. We use this distributed variant as an example
to show the uses of Petri nets and distributed runs (and ver-
ify them in Sect. 13.10). Dijkstra assumesoneagent playing
with given objects (pebbles). We assume the pebbles them-
selves to be agents and therefore replace them with children,
for descriptive purposes.

The kindergarten game starts out with an arbitrary number
of children in a playing area. Each child is dressed in either
black or white. At any one time, two children can sponta-
neously leave the playing area together. After that, one child
returns, according to the following rules:

• If the children are dressed in different colors, the one dressed
in white returns;

• If the children are dressed in the same color, a child dressed
in black returns (if both are dressed in white, one child
changes).

We want to develop an appropriate model for this game.
To do this, we construct a placechildren, with the group of
children as initial marking. If we depict a child dressed in black
or white as• or ◦, respectively, and abbreviate (children, •) and
(children, ◦) as• and◦, respectively, then Fig. 4.12 shows the
three possible actions of the game.

t1 t2 t3

Figure 4.12: The three actions of the kindergarten game

Figure 4.13 models the entire game. As initial marking, a
finite number of children, each dressed in either black or white,
is assumed. Each transition in Fig. 4.13 is hot. Thus, a run
terminates only if no transition is enabled, which means that
only one child remains. The three runs in Fig. 4.14 all start
with the initial markingM0(children) = [◦, ◦, •, •, •].
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...

...

childrent1

t2

t3
Figure 4.13: Model of the
kindergarten game

t1

t1

t3

t2

K1
t3

t3

t2

t3

K2

t1

t2
t1

t1
K3

Figure 4.14: Three distributed runs of the kindergarten game

To what extent the color of the last remaining child’s clothes
depends on the initial marking and the structure of the respec-
tive run is covered in Sect. 13.10.

4.7 Causal Order

In contrast to sequential runs, distributed runs show thecausal
relations of actions. Fig. 4.15 exemplifies this with two system
nets, both of which have the same sequential runs:

ACE
a

−→ BCE
b

−→ BDE and

ACE
b

−→ ADE
a

−→ BDE.

Their distributed runs, however, are distinct:Nl has a single
distributed run, shown in Fig. 4.16.Nr, on the other hand, has
two distributed runs, shown in Fig. 4.17.
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a

b

A B

C D

E

Nl: a andb independent
from each other

a

b

A B

C D

E

Nr: a andb in arbitrary
order

Figure 4.15: Independence and arbitrary order

a

b

A B

C D

E

Figure 4.16: The distributed run ofNl

a

b

A B

C D

E E E

a

b

A B

C D

E E E

Figure 4.17: The distributed runs ofNr

In Nr, the placeE can be seen as a model of a resource that
is used, but not usedup. This forces the two actions ofa andb
into one of two possible orders.

a
b

a
b

g

a
b

g

d

causal order

If an actionα generates tokens that are used by another ac-
tion β, thenα causally precedesβ. This “causally precedes”
relation is, of course, transitive: ifα precedesβ andβ precedes
γ, thenα also precedesγ. Furthermore,causally precedesis
irreflexive: no action causally precede itself. Thus,causally
precedesis a strict partial order.

In general, this order is indeed not total: An actionδ may
occur independently fromβ. However, this does not imply
that δ andβ occur simultaneously. Simultaneity is transitive;
independence is not.
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The relation between the sequential and the distributed runs
of a system netN becomes evident if, in every distributed run
K of N , the corresponding tokens are put in the places in◦K.
Thus,K itself becomes a system net with an initial marking.

In this case, every sequential run ofK is also a sequential
run of N . The runK1 in Fig. 4.14 is an example of this. It
generates the two sequential runs in Fig. 4.18.

Vice versa, every sequential run ofN is generated by at least
one distributed runK of N .

[•, •, •, ◦, ◦]
t1−→ [•, •, ◦, ◦]

t3−→ [•, ◦, ◦]
t1−→ [◦, ◦]

t2−→ [•]

[•, •, •, ◦, ◦]
t3−→ [•, •, ◦, ◦]

t1−→ [•, ◦, ◦]
t1−→ [◦, ◦]

t2−→ [•]

Figure 4.18: The two sequential runs generated byK1

4.8 The Composition of Distributed Runs

C

B

A

G

F

E

D

a

b

c

e

d

f

e e

LetK andL be two distributed runs. TheircompositionK · L
is formed by identifying the endK◦ of K with the outset◦L
of L. To do this,K◦ and◦L have to represent the same mark-
ing. K · L contains all the elements ofK andL and retains
their order. Figure 4.19 shows two composable runsK and
L of the mutual exclusion system. An initial segment of their
compositionK · L is shown in Fig. 4.5.

A a B b C c A

D

E

D

A

D

E d F e G f E

a b C c AB

D

d F e

D

...

...

runK runL

Figure 4.19: Two composable runs

If K andL can be composed, the runK · L is defined as composition

(PK ∪ PL, TK ∪ TL, FK ∪ FL).
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Exercises

1. Consider the system net in Fig. 4.20:

c d

D

E F

A

B

ab

C

Figure 4.20: System netN

(a) Determine the number of

(1) infinite sequential runs,
(2) infinite distributed runs,
(3) finite sequential runs,
(4) finite distributed runs.

(b) Which of the answers to (a) change if one of the four transitions is assumed to be
cold?

(c) Compare the runs of the system nets in Fig. 4.20 and Fig. 4.1.

2. (a) Specify the actions of the system netN in Fig. 3.3.

(b) Characterize all distributed runs ofN .

3. Consider the bell clock in Fig. 4.10:

(a) Expand the bell clock by a place that shows the current hour between 1 and 12.
Modify the chimes so that on eachn-th hour, the bell chimesn times.

(b) Modify the bell clock so that when the tokens15, 30, 45 and0 are reached in place
p, the bell chimes once, twice, three times and four times, respectively.

* (c) Now combine the two system nets from (a) and (b) so that oneachnth hour, the bell
first chimes four times and then, after a pause,n times.

(d) Construct finite initial segments of the runs of all subtasks.

4. Prove the following:
If J can be composed withK, andK with L, then(J ·K) · L = J · (K · L).
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Further Reading

In the literature, sequential runs are by far the predominant formalism. They are technically
simple, sufficient to model many situations, and satisfy thecommon intuition that events occur
along a global time scale, or are mapped onto such a scale by anobserver. From the beginning,
the concept of a distributed run, that is, a partially ordered set of local states and transitions,
has been an important part of the theory of Petri nets [36], [58]. In 1981, Nielsen, Plotkin and
Winskel [54] put distributed runs in the context of the mathematical structures of other system
models. In 1988, Best and Fernandez discussed a multitude of relations between system nets
and distributed runs [10]. Two aspects of distributed runs are particularly important today: their
use in scenarios (Chapter 5) and their contribution to the control of the state space explosion
during verification through model checking [49], [77]. To test interesting characteristics of a
system, this process compiles sufficiently long initial segments of all its distributed runs (that
start with the inital marking) into a tree-like structure. This structure is then efficiently analyzed.
Esparza and Heljanko [23] have shown numerous proof techniques based on temporal logic that
make use of this structure.
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Read and Write vs. Give and Take

Conventional representations of algorithms, especially conventional programming languages,
use memory cells, which store their respective current values as state components. Dynamic
behavior is described as a value assignment of the form:

x0 := f(x0, . . . , xn).

Depending on the current values in the memory cellsx0, . . . , xn, the cellx0 receives a new
value. The previous value inx0 is then not accessible anymore. “Read and (over)write” are
thus the basic operations of programs. For many algorithms,this is intuitive and appropriate,
for example, in Euclid’s algorithm for computing the greatest common divisor of two natural
numbers. However, different algorithms have different basic operations, for example, the send-
ing and receiving of messages or objects. Therefore, Petri nets use a different approach: a state
component is – intuitively – an object in a certain location.Dynamic behavior moves objects
from one location to another. Some objects may be created (coming from an unmodeled envi-
ronment) or they may disappear (into it) during the process.Thus, “give and take” are the basic
operations here.

This prompts us to try to translate programs into Petri nets and vice versa: each variablez in
a program corresponds to a placepz in a system netN , and the current valuew in z corresponds
to a token inpz. The reading ofz is simulated with a transitiont and a loop betweenpz andt:

pz

x

x

w t

In a concurrent program with two processes, a second processin N would generate a second
loop betweenpz and a second transitiont’.

pz

w tt'

In each run ofN , the transitionst andt’ can occur arbitrarily often, but always one after another
and never independently. For example,t’ may occur infinitely often and blockt. This contradicts
the assumption that processes can read a variable independently without interfering with each
other. If the updating of the variablez is also modeled as a loop between a transitiont” and the
placepz, the updating transitiont” can be blocked by the reading transitiont, in contradiction to
the common assumption of concurrent programming in which the updating of a variable is never
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blocked by the reading of the variable. This observation hasfar-reaching consequences, some
of which will become apparent in the case study of the mutual exclusion system in Chap. 20.

The translation of a system netN into a programP synchronizes the transitions ofN into
one or more control flows. The structure

r s t

of N generates (among others) a distributed run in whichr andt occur independently from each
other. A corresponding program would have to organize the nondeterminism betweenr ands
and betweent ands and thus forcer ands under a central control.

Finally, programming languages and many other operationalmodeling techniques allow for
multiple control flows. They are, if necessary, dynamically created or terminated, but rarely
reach the necessary flexibility to model, for example, the solution to the kindergarten game in
Fig. 4.13.



Scenarios Chapter 5

A user of a technical or organizational system usually does not
need each and every possible behavior of the system. The work
is often limited to a few activities that are repeatedly executed.
Therefore, it is convenient to consider typicalscenariosof a
system. A scenario consists of a finite number of elementary
actions and terminates in the same state in which it started.
Because of this, multipleinstancesof a scenario can occur
multiple times in the same run. A scenario often describes an
interaction pattern between a process and its environment,or
between two processes.

Typical scenarios of the systems considered thus far are:

• selling a packet of cookies,

• visiting one’s critical state once,

• sending a message.

Technically, a scenario is constructed as a finite distributed
run, whose final marking equals its initial marking. A run of
a distributed, reactive system is often composed of many in-
stances of only a few scenarios. Ifeveryrun can essentially
be constructed like this, the system isscenario-based. Under-
standing the scenarios of a system is often the easiest way to
understand the entire system. We will illustrate this usingthe
examples of the mutual exclusion system, the crosstalk algo-
rithm and the cookie vending machine.

5.1 Defining Scenarios

scenarioA scenarioof a system netN is a finite partial distributed run
K of N in which the outset,◦K, and the end,K◦, represent
the same marking.
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Figure 5.1 shows two scenarios of the mutual exclusion sys-
tem: one for the left and one for the right process. Each process
passes through the cycle oflocal, to waiting andcritical, back
to local. The kindergarten game (Sect. 4.6) is an example of a
system net without scenarios.
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Figure 5.1: The two scenarios of the mutual exclusion system

From the definition of the composition of distributed runs in
Sect. 4.8 it follows that arbitrarily many instancesK0, . . . , Kn

of different scenarios with the same initial and final conditions
can be assembled into a finite or infinite partial distributedrun

K0 · . . . ·Kn or K0 ·K1 · . . . ,

respectively. For example, each finite distributed run of the
mutual exclusion system shown in Fig. 3.2 can be assembled
from instances of the two scenarios shown in Fig. 5.1.

scenario-based system net A system netN is scenario-basedif there exists a finite
setA of scenarios such that each complete finite or infinite
distributed run ofN can be written as

K1 ·K2 · . . . ·Kn or K1 ·K2 · . . . ,

respectively, where eachKi is a scenario inA. Multiple in-
stances of the same scenario may, of course, occur in the same
run. Occasionally, a run may also have an irregular initial or
final segmentK0 orKn, respectively.
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The mutual exclusion system is obviously scenario-based:
the two scenarios shown in Fig. 5.1 suffice. An infinite run
may also contain an instance of the actiona or d.

5.2 The Scenarios of the Crosstalk Al-
gorithm

The two processesl and r of the crosstalk algorithm from
Chap. 3 (Fig. 3.7) cooperate in three scenarios:

• l sends,r receives;

• r sends,l receives;

• both send and receive, and crosstalk occurs.

One may assume a more abstract view and summarize the first
two scenarios as “one sends, one receives”.
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Figure 5.2: The three scenarios of the crosstalk algorithm
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Figure 5.2 shows the three scenarios of the algorithm with
the symbolic denotations from Fig. 3.8. The crosstalk algo-
rithm is scenario-based: each distributed run consists of afinite
or infinite number of instances of the three scenarios shown in
Fig. 5.2.

5.3 The Scenarios of the Cookie Vend-
ing Machine

The cookie vending machine from Chap. 1 and 2 has only one
scenario: the return of an inserted coin. Figure 5.3 shows this
scenario for the version of the machine shown in Fig. 2.1.

D c A
�1

e D
Figure 5.3: Scenario of the
cookie vending machine

Intuitively, one might also consider selling a cookie packet
as a scenario. In its outset, a coin can be inserted, no signal
is pending, and the compartment is empty. The partial run in
Fig. 4.7 shows this behavior of the cookie vending machine.
To form a complete scenario, the tokens in the counter, the
cash box and the storage would have to match in the outset
and at the end. To also cover such cases, we will weaken the
definition of a scenario of a system netN :

A scenario for a markingM of N is a finite partial dis-
tributed runK of N in which a part of◦K and a part ofK◦

represent the markingM . Figure 4.7 thus shows a scenario of
the cookie vending machine for a markingM with M(D) =
M(G) = [•]. Figure 5.4 shows another such scenario. Both
can be composed to form the partial run shown in Fig. 5.5.
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Figure 5.4: Scenario for the markingM with M(D) = M(G) = [•]
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Figure 5.5: Distributed run of the cookie vending machine, composed of
the scenarios for the markingM(D) = M(G) = [•] shown in Figs. 4.7
and 5.4
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Exercises

1. (a) How many scenarios does the algorithm in Fig. 3.3 have?Give one.

(b) How many finite sequential runs does that scenario describe?

2. Does the system net in Fig. 5.6 have scenarios? Is it scenario-based?

A

a
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e

Figure 5.6: System net

3. (a) Construct a scenario for the system net in Fig. 5.7.

A a

B b C c

D d E e

F

G

Figure 5.7: System net

(b) Is the system net scenario-based?

Further Reading

Thinking in scenarioscan significantly simplify and deepen our understanding of acomplex
system. In connection with Petri nets, Desel [16], in particular, has proposed the use of sce-
narios. Message sequence chartsdescribe scenarios very explicitly. They form the basis of a
modeling and simulation technique in [35].
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Scenario-Based System Nets

The term “scenario” is not used very consistently in the fieldof software engineering. In general,
the term “scenario” is used to describe a coherent section ofbehavior that is contiguous from
the observer’s perspective. Typically, a scenario is used interactively to reach a goal. From the
perspective of the system architecture, a scenario generally covers several components and only
uses a part of each component. A scenario is usuallyreactive, because it needs input from the
environment during its process. In the mutual exclusion system and the crosstalk algorithm,
all scenarios have this characteristic. This also holds forthe example of the cookie vending
machine if the machine and each user are considered to be components.

Because scenarios describe the behavior that a user has envisioned for a specific system, it
would be most useful if one could derive a system from a given set of scenarios. In the above
systems of the crosstalk algorithm, the cookie vending machine and the mutual exclusion system
can, in fact, be derived from the corresponding scenarios byidentifying elements with the same
denotations. Harel greatly extends this idea for Live Sequence Charts [35] and integrates it into
a tool.





Further Notations for for
Elementary System Nets

Chapter 6

In the literature, elementary system nets are often extended by
additional notations, especiallycapacities(“no transition can
add an(n + 1)th token to a placep”) and arc weights (“n to-
kens simultaneously flow through an arc”). We will discuss
both of these extensions and show that they do not increase the
expressiveness of elementary system nets: they can be simu-
lated and are thus merely syntactic sugar. Occasionally, itis
possible to use capacities and arc weights to construct veryin-
tuitive and clear models. In such cases, they should definitely
be used.

However, a transition that is supposed to “test” the number
of tokens in a place, or that should be given priority in case of a
conflict, is a different matter: such things cannot be simulated
within the bounds of elementary system nets.

6.1 Place Capacities

One occasionally wants to express that a placep can hold at
mostn tokens, and that a transitiont that would add an(n +
1)th token should thus not be enabled. In the graphical rep-
resentation of a system netN , the placep could be labeled
accordingly

p

capacity = n
t

and the conditions for the enabling oft in a markingM be
expanded byM(p) ≤ n− 1.

n-bounded marking

This does not increase the expressiveness of elementary sys-
tem nets. To show this, letN be an elementary system net in-
cluding a placep with a capacity ofn. A markingM of N is
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calledn-boundedif
M(p) ≤ n.

In particular, let the initial markingM0 of N be n-bounded.

n-reachable marking
We now construct an elementary system netN ′ such that the
reachable bounded markingsM of N and the markingsM ′ of
N ′ unambiguously correspond to each other, and that for all
bounded markingsM1 andM2 of N the following holds:

M1
t

−→ M2 is a step ofN iff

M ′

1
t

−→ M ′

2 is a step ofN ′.
(1)

N ′ consists ofN , expanded by a placep′. For each transition
t of N that is not connected top by a loop,N ′ contains an
additional arc of the form

• (t, p′) if (p, t) is an arc ofN ,

• (p′, t) if (t, p) is an arc ofN .

The initial markingM0 of N is expanded inN ′ byn-complement ofp

M0(p
′) = n−M0(p).

The placep′ is then thecomplementof p. Figure 6.1 shows
this construction. Proposition (1) now follows directly from
the step rule for transitions.Nn

p

t1 t2

t3 t4

capacity = 3
p

p'

t1 t2

t3 t4

capacity = 3

Figure 6.1: Complementp′ of p
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6.2 Arc Weights

Occasionally, a model is needed that only contains black to-
kens (like elementary system nets), but still adds to or removes
from a place more than one token during a single step (which
is easily achieved for the generic system nets in Chap. 2). To w-step

graphically represent such a net, the corresponding arc is la-
beled with the corresponding factor (arc weight). Figure 6.2
shows an example: when all the packets have been sold, the
money is taken from the cash box, the storage is refilled and
the counter is reset to5.

counter

signal

compart-
ment

storage

cash box

no signal

take
packet

e

coin slot

insertion
possible

e

return
coin

insert
coin a b

55

5

c

Figure 6.2: Expansion of Fig. 3.1 by refilling the storage with 5 packets

w-generalizationAn elementary system netN with arc weights can, as with
place capacities, also be simulated by a netN ′ without arc
weights. However,N andN ′ are not related as closely any-
more:N ′ contains additional places and transitions, and a sin-
gle step ofN is simulated by a sequence of steps ofN ′. To be
precise, a sequential run

M0
t1−→ M1

t2−→ . . .
tk−→ Mk

of N is called areductionof a sequential run n-reduction

M ′

0

t′
1−→ M ′

1

t′
2−→ . . .

t′
k′−→ M ′

k′

of N ′ if the sequencet1 . . . tk is generated from the sequence
t′1 . . . t

′

k′ by eliminating fromt′1 . . . t
′

k′ all the transitions that are
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not inN . The netN ′ is now constructed such that:

The sequential runs ofN are the

reductions of the sequential runs ofN ′.
(2)

For the construction ofN ′, each placep of N is replaced by a
sequence of places and transitions. Figure 6.3 shows an exam-
ple of this. There the step sequence

M0
t1−→ M1

t2−→ M2
t3−→ M3

in N is a reduction of the step sequence

M ′

0
t1−→ M ′

1
t2−→ M ′

2
u1−→ M ′

3
u2−→ M ′

4
u3−→ M ′

5
u1−→ M ′

6
t3−→ M ′

7

in N ′. Other step sequences inN ′ may generate the same re-
duction.

t2t1

1

1

2

3

t3 t4

p

t2t1

u2u1p1 p2 p3 p4

t3 t4

u3

cap. = 1 cap. = 1

N N ′

Figure 6.3: Technical example of the simulation of arc weights

The general procedure for constructingN ′ fromN replaces
each placep with a sequence

p1

. . .

p2 pn+m-1

of places and transitions. Its lengthn + m − 1 results from
the greatest weightsn andm of arcs that end and start inp,
respectively. In Fig. 6.3 thusn = 2 andm = 3, which results
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in 2+3−1 = 4. Furthermore, for all placespn+1, . . . , pn+m−1

a capacity of 1 is required. In Fig. 6.3 those are the placesp3
andp4.

Each arc(t, p) of N that ends inp with an arc weight ofk is
replaced inN ′ with k arcs of the form(t, p1), . . . , (t, pk). Like-
wise, each arc(p, u) of N that starts inp with an arc weight
of l is replaced inN ′ with l arcs of the form(pn+m−l, u), . . . ,
(pn+m−1, u). The initial markingM0(p) of N is assigned to
M0(p1) of N ′.

t

p

u

l

k

p1

...

t

...

pk

...

pn pn+1

cap. = 1

...

pn+m-l

cap. = 1

...

pn+m-1

cap. = 1

...

u

Figure 6.4: Simulation of arc weights

Figure 6.4 outlines this construction. It is easy to show that
this construction satisfies (2). In the special case ofn = m =
1, the construction leaves the placep and its surroundings un-
changed.

6.3 Real Extensions

A transitiont of an elementary system netN is a≥ n-tester
of a placep if for each markingM the following holds:M
enablest if

M(p) ≥ n. (3)

In the construction

p t

n

n (4)
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t is obviously a≥ n-tester ofp. If t is already a transition of
N , this construction also implements the condition “p contains
at leastn tokens” for the occurrence oft.

The construction of a≤ n-tester ofp analogous to (3) is
not so simple. If a capacityk ≥ n is already known forp, the
complementp′ (cf. Section 6.1) can be tested for “≥ k − n”
instead:

p' tp

k-n

k-n

BecauseM(p) + M(p′) = k for each markingM , it follows
thatM(p) ≤ n iff M(p′) ≥ k − n.

If p is unbounded, no complement can be constructed and
this method fails. For an unbounded placep no “tester” transi-
tion t can be constructed that tests forM(p) = 0, M(p) ≤ n
or M(p) = n analogous to (4). Closely related to the test for
“= 0” is the increase of expressiveness by means of inhibitor
arcs. Aninhibitor arc (t, p) requires for the enabling oft that
p does not contain any tokens. Reset arcs also increase the
expressiveness of elementary system nets. Areset arc(t, p)
removes all tokens fromp at the occurrence oft.

Priorities are another example of real extensions: lett andu
be two transitions of an elementary system net. The transitiont
takespriority overu if t always occurs whenever a markingM
enables botht andu. As with the test for “0”, priorities cannot
be simulated by elementary system nets ift andu are adjacent
to an unbounded place. Also, priorities are not compatible with
the concept of distributed runs.
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Exercises

* 1. Develop a procedure to simulate a system net with capacities and arc weights with an ele-
mentary system net. Apply your procedure to the system net inFig. 6.5.

Hint: At first, generalize the concept of the complement of a place from Section 6.1 to
include arc weights. Then, analogously to the approach in Section 6.1, use this to construct
a system net without capacities, but with arc weights. Simulate this system net using the
method in Section 6.2. The result is a system net without arc weights, but with capacities.
Eliminate the capacities following the procedure in Section 6.1.

t1

p

t2 t3 t4

capacity = 5

2 13 2

Figure 6.5: System net with capacity and arc
weights

2. Convert the cookie vending machine in Fig. 6.2 into an elementary system net. As a simpli-
fication, you may limit the filling of the storage to three tokens.

Further Reading

The novice modeler sometimes perceives the rule for the occurrence of transitions as limiting
and cumbersome. Various ways of altering, generalizing or extending it come to mind. Sec-
tion 6.3 shows a few such extensions. However, such additional expressiveness comes at a
price: the models quickly become difficult to comprehend, the combination of such concepts is
prone to inconsistency, and many analysis techniques fail at first. However, some can be newly
devised. An example of this is Busi’s analysis of inhibitor arcs [11]. Among the many other
variants and generalizations, three are particularly interesting:

Montanari and Rossi [52] proposecontext places. A context place can be accessed by mul-
tiple transitions simultaneously without hindrance. Theycan, for instance, be used to solve the
problem described in the postscript to Chapter 4:Read and Write vs. Give and Take.

So-calledself-modifyingPetri nets, proposed by Valk in [75], employ arcs withvariablearc
weights. The actual weight of an arc then corresponds to the current number of tokens in one
of the net’s places.

The authors of [18] propose specialsignal arcsbetween transitions. With such an arc be-
tweent andu, the two transitions will occursimultaneouslyif both are enabled. If onlyt is
enabled, then onlyt will occur. Such behaviour can be simulated with inhibitor arcs. A good
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historic overview over different extensions can be found intheAdvanced Courses on Petri Nets
[70, 18].

A range of publications pursue the idea of tokens with a special structure and of using this
structure for the formulation of the occurrence rule and forthe analysis of system characteristics.
An example of this is the “nets as tokens” concept proposed byValk [76].
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A system is often modeled by a description of its observable
behavior, that is, global states and steps. However, to imple-
ment a system, it is often more practical to identifylocal state
components and actions whose cause and effect are limited to
a few state components. At first, we will discuss this problem
using the example of the light/fan system, and then give the
problem a precise form and solve it in the rest of this chapter.
The techniques presented here will be used in the case study in
Chapter 21 to systematically create an asynchronous hardware
architecture.

7.1 Example: The Light/Fan System

The reader is probably familiar with the common connection
between lighting and air ventilation in (windowless) bathrooms:
If the light is switched on while the fan is off, the latter will
start as well after some time. If the light is then switched off,
the fan will continue running for some time. If the fan is off
and the light is first switched on and then quickly switched off
again, the fan will not start at all. If the fan is running and the
light is switched off and then quickly switched on again, the
fan will continue running without interruption.

Traditionally, systems are often modeled asstate automata:
a state automaton consists ofstatesandsteps. One state is the
initial state. Every step transforms one state into another and
thereby executes an action. Several steps may quite well exe-
cute one and the sameaction. Technically, a state automaton
can be described as a graph, with states as nodes and steps as
labeled edges.

Figure 7.1 shows the behavior of the light/fan system as a
state automatonZ. It has four global states and four actions,
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light off
fan off

light on
fan off

switch
light off

switch
light on

light off
fan running

light on
fan running

switch
light off

switch
light on

fan stops

fan starts

Figure 7.1: The light/fan system as a state automaton

two of which (switch light on andswitch light off) can occur in
two states each.

Figure 7.2 shows the system as an elementary system net
N . It has four places describing thelocal states as well as four
transitions, one for each action of the system.

The representation as a system net clearly describes the cause
and effect of each action.switch light off, for example, can only
occur if the light is on. The current state of the fan is irrelevant
for this action. The fan itself, however, only starts if it isnot
running and the light is on at the same time.

In Fig. 7.2, we have modeled the switching of the light as
cold transitions, since nobody is forced to use the light switch.
The fan is a different matter. It has to react appropriately.The

light on

switch
light on

light off

switch
light off

fan stops

fan starts

fan
off

fan
running

e e

Figure 7.2: The light/fan system as an elementary system net



7.2. The General Question of the Synthesis Problem 81
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Figure 7.3: Abstract state au-
tomatonZ1

difference between hot and cold transitions is not modeled in
Fig. 7.1, and it is irrelevant for the rest of this chapter.

It is easy to determine that the system netN has the exact
same behavior as the state automatonZ: one constructs the
marking graph ofN (Section 2.8) and asserts that it is identical
to Z. Thesynthesis problem ofZ is the search for a technique
to deriveN from Z.

7.2 The General Question of the Syn-
thesis Problem

Each state of the light/fan state automaton in Fig. 7.1 is labeled
with two conditions. These conditions form places in Fig. 7.2.
In general, however, there is no information on the states ofa
state automatonZ. It is abstract, as in Fig. 7.3. Every edge of
such an automaton is labeled with anaction. The same action
may occur on more than one edge.

Thesynthesis problemof any (abstract) state automatonZ
is the search for adistributed systemV that behaves exactly
like Z. Instead of global states, onlylocal states may appear in
V . Every action appearing inZ has to be described completely
and unambiguously through its effect on a few local states in
V . To constructively solve this problem, we restrict the candi-
dates forV to 1-bounded elementary system nets. In doing so,
V behaves likeZ if the marking graphG of V is isomorphic to
Z. G is isomorphic toZ if every nodek of G maps to exactly
one nodek′ of Z such that:

• the initial marking ofG is mapped to the initial state ofZ,

• h
t

−→ k is a step inG iff h′ t
−→ k′ is a step inZ.
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To summarize: a system netN solves the synthesis problem
of a given (abstract) state automatonZ if the marking graphG
of N is isomorphic toZ.

There exist state automataZ whose synthesis problem can-
not be solved by any1-bounded elementary system net. An
example is the state automatonR in Fig. 7.4.

ab

a b

ab

a b

a

State automaton L State automaton R

Figure 7.4: The synthesis problem of L is solvable; that of R is not solvable

7.3 Regions of State Automata

In the following, we will develop an algorithm that takes a state
automatonZ and decides whether there exists a1-bounded el-
ementary system netN that solves the synthesis problem of
Z. If it is solvable, a solution that is “as small as possible” is
constructed. The construction does not take into account the
difference between hot and cold transitions. State automata
have an initial state but no final states.

To do this, for a given state automatonZ, a systemN is
constructed. If the marking graphG of N is isomorphic to
Z, thenN is the sought-after solution. Otherwise, a theorem
guarantees that no solution exists.

First of all, we have to decide which characteristics ofZ can
be used for the construction ofN . Apart from its structure as
a directed graph,Z is characterized particularly by edges with
the same labelings. After all, from the set of edges that are la-
beled with a symbolt, asingletransitiont has to be derived for
N . Therefore, the starting nodes of those edges – if applicable,
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together with other nodes ofZ – represent a place in•t.
Put more generally, a set of nodes ofZ can represent a place

in N . To find such sets of nodes, we define the following terms:
Let Z be a state automaton, letR be a nonempty subset of

its nodes and let
π : h

t
−→ k

be an edge ofZ (“ t-edge”). We define:

R receivesπ, if h 6∈ R andk ∈ R
R dispatchesπ, if h ∈ R andk 6∈ R
R containsπ, if h ∈ R andk ∈ R

h k

h k

h k

h k

t

t

t

t

R

region

R is aregion ofZ if for each edge labelingt of Z:

• R receives either each or not-edge and

• R dispatches either each or not-edge.

c

d

d

a

a

b

b

no regions

minimal region

A regionR of Z is minimalif no proper subset ofR is a region
of Z.

Figure 7.5 shows some of the regions of the state automaton
Z1 from Fig. 7.3. Figure 7.6 shows the minimal regions ofZ1.

c

d

d

a

a

b

b

R3

R2

R1

Figure 7.5: Three regions of the state automatonZ1: R1 andR2 are mini-
mal;R3 is not.

7.4 The System Net of a State Automa-
ton

Using the following procedure, we construct from a given state
automatonZ an elementary system netN , thesystem net ofZ:
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A

B

D

E

C

c

d

d

a

a

b

b

Figure 7.6: The minimal regions of
Z1

• each minimal regionp of Z is a place ofN ;

• each edge labelingt occurring inZ is a transition ofN ;

• if a regionp receives thet-edges ofZ, then(t, p) is an arc
of N ;

• if a regionp dispatches thet-edges ofZ, then(p, t) is an
arc ofN ;

• if a regionp contains all thet-edges ofZ, then(t, p) and
(p, t) are arcs ofN

• if the initial state ofZ lies within a regionp of Z, the place
p of N holds a token.

a

b a

state automatonZ0

region A:
a

b a

region B: b a

region C: a

a

region D: a

b

B A c d

a

b C

D E

e

system net of a state automaton

Figure 4.1 shows the system net of the state automatonZ1

shown in Fig. 7.3, with its minimal regionsA, . . . , E shown in
Fig.7.6.

7.5 The Solution to the Synthesis Prob-
lem

The followingSynthesis Theoremis the basis for the solution
to the synthesis problem:

Theorem 1 (Synthesis Theorem). If the synthesis problem of
a state automatonZ can be solved by a1-bounded elementary
system net, then the system net ofZ is a solution.
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With this, it is possible to solve the general synthesis prob-
lem: one constructs the system netN of a given state automa-
ton Z and from this the marking graphG of N . If Z andG
are isomorphic,N obviously solves the synthesis problem of
Z. Otherwise, the synthesis problem ofZ cannot be solved by
any1-bounded elementary system net.

7.6 The Synthesis Problem of the Light/Fan
State Automaton

a

b

A C

B D

system netN0 of Z0

G1:
a

b a

AD BC

AB

CD

marking graph ofN0

Z:
a a

the system net ofZ:

a

does not solve the synthesis
problem ofZ

To simplify the argument, we use an abridged version of the
denotations of the light/fan system, as shown in Fig. 7.7.

A

b

B

a

D

b

C

a

d

c

minimal regions:
{A,B}, {A,D}, {B,C}, {C,D}

Figure 7.7: Abridgment of Fig. 7.1

This state automaton has four minimal regions. Following
to the procedure explained above, the system net in Fig. 7.8 is
constructed.

{B,C}

a

{A,D}

b

c

d

{C,D}{A,B}

Figure 7.8: Solution to the synthesis problem of the state automaton in
Fig. 7.7

The construction of its marking graph is left to the reader,
as well as ascertaining that the graph is isomorphic to Fig. 7.7.
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With this, Fig. 7.8 solves the synthesis problem of the state
automaton in Fig. 7.7. Changing the abridged denotations in
Fig. 7.8 back to their longer versions, in fact, results in the
system net shown in Fig. 7.2.
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Exercises

1. Show that in Fig. 7.4 the synthesis problem for L is solvable, but the one for R is not.

2. Solve the synthesis problem for the state automaton in Fig. 7.9.

a

d

b

c

e

d

e

Figure 7.9: State automaton

a
b

c

d

Figure 7.10: State automaton with easy synthesis prob-
lem

3. Why is the solution to the synthesis problem for the state automaton in Fig. 7.10 especially
easy?

4. Is the elementary system net in Fig. 7.11 a solution to the synthesis problem of a state
automaton?

B A c d

a

b C

D

Figure 7.11: System net

a a

Figure 7.12: State automaton

5. The synthesis problem for the state automaton in Fig. 7.12cannot be solved by any
1-bounded elementary system net. This is shown in the marginof Sect. 7.5. Construct
an elementary system net whose marking graph is isomorphic to the state automaton in
Fig. 7.12.
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Further Reading

The solution to the synthesis problem belongs to those success stories in the field of Petri nets
that emerged only slowly. Now, however, it belongs – in various versions – to the standard
repertoire of most Petri net analysis tools.

As early as the late 1970s, Carl Adam Petri knew how to reverse calculate any1-bounded
elementary system netN from its marking graphG: a state setA of G forms a place inN if
either all or no edges ofG that have the same label either start or end inA. He did not consider
this to be particularly interesting, however, becausen places ofN would result in2n nodes in
G and thus22

n

state sets – an unmanageable situation.
In the mid-1980s, Ehrenfeucht and Rozenberg [21] solved the synthesis problem of loop-

free,1-bounded elementary system nets as an example of use for their “2-Theory”. To do this,
they useall regions of a given state automaton for the construction of a system net. It was not
until 1993 that Bernardinello [8] confirmed the assumption that the minimal regions suffice.
Only with this restriction does the region theory become usable in practice. By using only the
minimal regions, nets of manageable sizes are constructed.

Many authors took part in generalizing the1-boundedness in Theorem 1 to generic elemen-
tary system nets and in including even inhibitor edges. Withthis, the synthesis problem of much
more general graphs becomes solvable. The most important authors include Badouel, Bergen-
thum, Busi, Cortadella, Darondeau, Desel, Gunther, Hoagens,Juh́as, Kishinevsky, Kleijn, Kon-
tratyev, Lavagno, Lorenz, Mauser, Mukund, Pietkiewicz-Koutny, Pinna, Thiagarajan, van der
Aalst and Yakovlev. An overview of these developments can befound in [45]. Also very in-
teresting for practical purposes is a reduction of the criteria for the solution to the synthesis
problem: A system netN solves a reduced synthesis problem of a state automatonZ if the
marking graphG of N is not necessarily isomorphic toZ, but if G andZ are bisimular or fulfill
some other simulation relation. In [12], for instance, onlya bisimulation is required between
the state automatonZ and the marking graph of the synthesized netN . Additionally, the tran-
sitions ofN may be labeled. Then, one action ofZ can be implemented by several transitions
of N . Lastly, it is possible to require special characteristicsof N , for instance, the free-choice
characteristic from Chapter 16. [78] solves the synthesis problem of other, liberal simulation
relations and also takes distributed runs into account. Numerous software tools for the analysis
of Petri nets offer a synthesis module, for instance, the tool Petrify [13].

Put intuitively, the synthesis problem seeks to construct adistributed system from the obser-
vation of its sequential behavior. The fact that this is possible marks Petri nets as a “very natural
modeling technique” for distributed systems.



Composition of Nets Chapter 8

It is a general principle of software engineering to assemble
small systems into larger ones. This process is calledcompo-
sition. Here we will consider the case of nets withinterfaces.
Two such nets can be joined together at their interfaces. Inter-
faces used for asynchronous, directed communication are an
important special case. Suchopen netsare particularly natu-
ral: each Petri net can be broken down unambiguously into its
set of smallest open nets.

8.1 Nets with Interfaces

Two netsN1 = (P1, T1, F1) andN2 = (P2, T2, F2) can always
also be conceived of as a single netN . Each place, each transi-
tion and each arc ofN is a place, a transition or an arc of either
N1 orN2:

a b c

d e f

a b c

d e f

N
1
:

N
2
:

N:

N =def (P1 ∪ P2, T1 ∪ T2, F1 ∪ F2). (1)

Of interest are those elements that belong to bothN1 andN2:
A placep ∈ P1 ∪ P2 consistently appears only once inN . The
same is true for shared transitions and arcs.

a b c

d b c

a

b c

d

N
1
:

N
2
:

N:

a

a

The case of an element appearing inN1 as a place and inN2

as a transition or arc does not appear in any sensible modeling
task. We will not consider such cases here.

A composition of the form (1) is not sufficiently flexible. An
example of this is a netN for which there exist two instances
(copies) that should be composed in such a way that only a few
specified elements are merged (i.e.,identified) and the others
are kept separate.

To express this, we distinguish betweeninterfaceelements
and inner elements of a netN . The difference becomes im-
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portant during the composition ofN with a netN ′ if N and
N ′ share one or more elements: if an elemente belongs to the
interfaces of bothN andN ′, then during the composition,e
should be identified according to (1). Otherwise, contrary to
(1), the two examples ofe should be kept separate. Techni-
cally, this is achieved by means of a new elementẽ that does
not belong to eitherN or N ′. At first, the netÑ is constructed
from N by

a b c

a

a b c

goal:

interface

a b c

a b c

a

b c

b c

N:

N:

interface: { a }

~

~ ~

~ ~composed  :

interface net

composition of interface nets

substituting̃e for e (2)

in N . For the composition ofN andN ′, the netsÑ andN are
now joined according to (1).

A netN = (P, T, F ) together with an interface

I ⊆ P ∪ T

is aninterface net.
Graphically, the interface of an interface net is often placed

on or outside of a border aroundN . Figure 8.1 shows three in-
terface nets modeling the behavior of a customer, a salesperson
and his stock. Their inner elements model appropriate control
flows.

The composition of two interface netsN1 = (P1, T1, F1)
andN2 = (P2, T2, F2) with the interfacesI1 andI2 is again an
interface net,N1⊕N2. In accordance with (2), we assume here
that no inner element ofN1 or N2 appears in both nets. Then
(1) describes the net structure ofN1⊕N2. The shared interface
elements ofN1 andN2 become inner elements ofN1⊕N2; the
rest comprise the interfaceI of N1 ⊕N2:

a b c

d e

c

e f

b

a b c

d e f

b

N
1
:

N
2
:

N
1

N
2
:

~

I =def (I1 ∪ I2)\(I1 ∩ I2).

Figure 8.2 shows the composition of two of the interface nets
shown in Fig. 8.1.

During the composition of two nets, those two nets are in-
terchangeable (⊕ is commutative). If, in the case of multiple
interface nets, each shared element appears at most in two in-
terfaces, the order in which the nets are composed is also inter-
changeable (⊕ is occasionally associative).
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order check payment goods

customer

order check paymentsales-
person

request

request goods
stock

Figure 8.1: Three interface nets

order check payment goods

Figure 8.2: Compositionsalesperson ⊕ stock
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Theorem 2 (Composition Theorem for Interface Nets). For
i = 1, 2, 3, letNi be interface nets with the interfacesIi.

(a) N1 ⊕N2 = N2 ⊕N1.

(b) If I1∩I2∩I3 = ∅, then(N1⊕N2)⊕N3 = N1⊕(N2⊕N3).

Both propositions follow from the known laws of set oper-
ations.

associative set of interface nets A setM of interface nets is calledassociativeif no element
appears in the interfaces of three or more of the nets inM .
The term “associative” follows from Theorem 2(b). The three
interface nets in Fig. 8.1 form an associative set.

8.2 Communicating Nets

Shared places in the interfaces of two nets are often used for
asynchronous, directed communication. A placep in the inter-
face of a netN is anin-place ofN if no arc ends inp, that is,
if •p = ∅. Likewise,p is anout-place ofN if p• = ∅. OUTN

and INN respectively denote the sets of theout- andin-places
of N .

in out

communicating interface nets
Two interface netsN1 andN2 communicate via an interface

placep if N1 puts tokens intop andN2 takes tokens fromp, or
vice versa: ifN2 puts tokens intop andN1 takes tokens from
p, that is, if

p ∈ (OUTN1
∩ INN2

) ∪ (OUTN2
∩ INN1

).
q

p

q

p

N
1
:

N
2
:

Communication

via p andq

N1 andN2 communicateif for the interfacesI1 andI2 of
N1 andN2 eachx ∈ I1 ∩ I2 is a place via whichN1 andN2

communicate. The three nets in Fig. 8.1 communicate pairwise
with each other.

In practice, sets of pairwise communicating interface nets
are common: each interface place is shared by at most two
interface nets. For such sets, the following holds.N

1
N

2
:

Theorem 3 (Associativity Theorem). LetM be a set of pair-
wise communicating interface nets. ThenM is associative.
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To prove this, one first shows by contradiction that each
shared elementx appears at most in two interfacesIi of netsNi

in M : if x ∈ I1 ∩ I2 ∩ I3, thenx is anin-place or anout-place
of at least two of the three netsN1, N2, N3. Those two nets do
not communicate! Thus the proposition follows from Theorem
2.

8.3 Unambiguous Decomposition into Open
Nets

Communicating nets often only havein- andout-places in their
interfaces, that is, no transitions and no places with transitions
in both their pre-and post-sets. Such nets are often called
open. The nets in Figures 8.1 and 8.2 are all open. Open nets
are a very natural construction: each arbitrary net can be de-
composed into a unique set of smallest, pairwise communicat-
ing open nets.

For a netN = (P, T, F ) and subsetsP ′ ⊆ P , T ′ ⊆ T and
F ′ ⊆ F of places, transitions and arcs ofN , the net

N ′ = (P ′, T ′, F ′)

is asubnet ofN if N ′ inherits all relevant arcs ofN , that is, if
for each arc(x, y) ∈ F with x, y ∈ P ′ ∪ T ′:

(x, y) ∈ F ′.

Now let IN be the set ofin-places and OUT the set ofout-
places ofN ′ such that inN for eachp ∈ IN and eachq ∈
OUT:

p• ⊆ T ′ and •q ⊆ T ′.

ThenN ′ together with the interface
q

p

N'

open subnet

minimal open subnet

I =def IN ∪ OUT

is anopen subnet ofN . If N ′ itself does not have any proper
open subnets, thenN ′ is aminimal open subnet ofN .

The two open netssalesperson and stock in Fig. 8.1 are
open subnets of the net in Fig. 8.2. Each minimal open subnet
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of the examples in Figures 8.1 and 8.2 consists of a single tran-
sitiont together with its pre- and its post-set•t∪t• as interface.

The minimal open subnets ofN form an associative set and
can thus be composed in arbitrary order. Above all, however,
their composition again results inN itself:

N: N'

N is a minimal open subnet.

Theorem 4 (Theorem on Minimal Open Subnets). Let N be
a net and letN1, . . . , Nk be the minimal open subnets ofN .
Then:

(a) {N1, . . . , Nk} is associative.

(b) N = N1 ⊕ . . .⊕Nk.

Property (a) follows from the Associativity Theorem and the
observation that theNi are communicating pairwise. The proof
of (b) utilizes an equivalence relation∼ on the transitions ofN :
let∼ be the strongest equivalence such thatt ∼ u if t•∩u• = ∅
or •t ∩ •u = ∅. Each equivalence classK of ∼ together with
the places in•t ∪ t• of all transitionst ∈ K form a netNK .
Together with thein- andout-places ofNK as interfaceI, the
netNK is a minimal open subnet ofN .
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Exercises

1. Model the cookie vending machine shown in Fig. 3.1 as well as one of its customers as open
nets.
Hint: The three transitionsinsert coin, take packet and return coin in Fig.3.1 describe (in
parts) the behavior of the customer. Thus, the interface between the vending machine and
the customer consists of transitions there. The behavior ofthe customer is not explicitly
modeled. Construct the interface between the vending machine and the customer as places
for the coin slot, the cookie compartment and a slot for returned coins.

2. Based on Fig. 8.1, construct the nets

(a) customer ⊕ salesperson,

(b) customer ⊕ stock,

(c) customer ⊕ salesperson ⊕ stock.

3. Prove Theorem 2.

Further Reading

In this chapter, we have defined the composition of two nets via shared elements. Alterna-
tively, it is possible to assign labels to elements and to define composition via equally labeled
elements. Most composition operations given in the literature are ultimately based on one of
these two principles. This includes the mathematically challenging pushout construction found
in category theory. Open nets are typically used to model service-oriented architectures [2].
Interfaces with transitions are covered in [9]. An overviewon different composition operations
is given in [34]. Associativity is important for the composition of many variants of nets [68].
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Part I showed how to model a system as a Petri net. Part II is
now concerned with theanalysisof such models, that is, deter-
mining important properties. Such an important property often
makes a statement about each and every reachable markingM
of a system net. For instance, in each reachable markingM of
the cookie vending machine in Fig. 2.1, the following holds:

M marks eitherA or D

and
M consists of at most 9 tokens.

Such a system property is astate propertyof the system
net. There are a series of specific analysis techniques for state
properties. This topic is discussed in Chapters 9–13.

There are some very common properties that are often asked
about in a system netN : doesN terminate? CanN reach
a marking that no longer enables any transitions? Can each
transition always become enabled again? From each reach-
able marking, is it possible to reach the initial marking again?
Such questions generally cannot be answered, or at least not
very efficiently. Some of them can be characterized in terms
of graph theory by means of a marking graph (Sect. 2.8) or ap-
proximated by means of a derived graph, the covering graph.
Chap. 14 discusses these graphs.

Two questions are particularly important for a system netN
and a markingM :

• IsM reachable from the initial marking?

• IsM definitely reached from the initial marking?

These two questions are covered in Chaps. 15 and 16. Chap-
ters 17, 18 and 19 introduce special net classes and describe
how their structures can be utilized in their analysis.
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Important properties of a system pertain to the system’s reach-
able states. In a system netN , those are the reachable mark-
ings. We represent such astate propertyE of N with an ex-
pressiona that contains as variables the places ofN . If, for a
markingM , each placep in a is then replaced withM(p), the
expression can be evaluated to eithertrue (“E holds inM ”) or
false(“E does not hold inM ”).

State properties are often expressed as linear equations or
inequalities. This chapter covers theform and the validity of
such equations and inequalities. How toprove their validity
is covered in the following chapters. As an example, we start
out with properties of the cookie vending machine. The form
of linear equations and inequalities is very simple and is ex-
plained in the second section. This is followed by further ex-
amples, and finally by ideas about variants of linear equations
and inequalities.

9.1 Equations and Inequalities of the Cookie
Vending Machine

For the model of the cookie vending machineN in Fig. 2.1 and
its respective initial markingM0, the following holds:

M0(A) +M0(D) +M0(E) = [ ] + [•] + [7] = [•, 7]. (1)

In particular, thequantityof tokens can be derived from this:

x x-2

a

E 7

A

D

e

c
�1 �1

x   2³

e

�1

|M0(A)|+ |M0(D)|+ |M0(E)| = |[•, 7]| = 2. (2)

Thus, the placesA, D andE initially hold a total of two tokens.

After the stepM0
c

−→ M1:

M1(A) +M1(D) +M1(E) = [ �1 ] + [ ] + [7] = [ �1 , 7]. (3)
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The places now hold different tokens, but the quantity of to-
kens remains the same:

x x-2

a

E 7

A

D

e

c
�1 �1

x   2³�1

e

�1

|M1(A)|+ |M1(D)|+ |M1(E)| = |[ �1 , 7]| = 2. (4)

Now Eqs. (2) and (4) can be combined. For each of the two
markingsM = M0 andM = M1, the following holds:

|M(A)|+ |M(D)|+ |M(E)| = 2. (5)

In fact, Eq. (5) holds not only for the markingsM = M0 and
M = M1, but foreach reachable markingM of N . The places
A, D andE thus always hold two tokens. Equation (5)holds in
N , and we write as shorthand:

|A|+ |D|+ |E| = 2. (6)

Upon closer inspection, it becomes evident thatA and D to-
getheralwayshold one token andE another. Thus, for each
reachable markingM :

|M(A)|+ |M(D)| = 1 and|M(E)| = 1.

As shorthand, we write:

|A|+ |D| = 1, and|E| = 1. (7)

The relation betweenA andD can be described even more
precisely: in each reachable markingM , eitherA holds a euro
or D holds a black dot. To express this observation as an equa-
tion, we count the tokens inD; that is, we calculate|M(D)|,
and then generate the respective amount of euro coins:

|M(D)| · [ �1 ]. (8)

BecauseM(D) = [•] or M(D) = [ ], it follows that|M(D)| =
1 or |M(D)| = 0. The expression (8) thus either evaluates to
[ �1 ] or [ ]. If M(A) (that is,[ ] or [ �1 ], respectively) is added to
this, the result is[ �1 ]. Thus, for each reachable markingM :

M(A) + (|M(D)| · [ �1 ]) = [ �1 ]

or simply
A + (|D| · [ �1 ]) = [ �1 ].
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Intuitively speaking, the token inD corresponds to a euro inA.
The relation betweenF andH is particularly interesting. In

any reachable markingM , each euro inF should correspond
to two packets inH, thus2 · |M(F)| + |M(H)| = 7. However,
this does not hold if a signal is pending inB. In this case, the
signal neutralizes one euro inF. So actually2 · |M(F)| − 2 ·
|M(B)|+ |M(H)| = 7, or simply

2|F| − 2|B|+ |H| = 7 (9)

holds inN .1 Furthermore, the equation

x-2x

a

E 7

B

b

H

F

G

�1

y,z
y,z

x   2³
�1

2|B|+ 2|G| = 2

obviously holds inN and can be added to Eq. (9), which yields:

2|F|+ 2|G|+ |H| = 9.

This equation can be interpreted as a “stream” of tokens, flow-
ing from H via G to F.

Cardinality and multiplicity are apparently important for the
formulation of valid linear equations. However, other func-
tions are often needed as well. An example is the relation be-
tween the numeral valuew of the token inE and the amount
a of coins inF: the sumw + 2a is always 7. To express this
relation as an equation, letcontbe a function that, for each sin-
gleton multiset[n] with n ∈ N, returns the valuen. It is thus
defined as

in the initial markingM0 in
Fig. 2.1:

cont(M0(E)) = cont([7]) = 7

2 · |M0(F)| = 2 · |[ ]| = 2 ·0 = 0cont([n]) =def n.

Then:
cont(E) + 2|F| = 7. (10)

In addition to equations, there are also some interestingin-
equalitiesholding inN , for instance

2 · |M0(F)|+ |M0(H)| =

2 · |[ ]|+ |[ , , , , , , ]| =

2 · 0 + 7 = 7 ≤ 9

cont(M0(E)) = cont([7]) = 7 ≤ 7 =

|[ , , , , , , ]| = |M0(H)|

2|F|+ |H| ≤ 9 and (11)

cont(E) ≤ |H|. (12)

cont(E) + 2|F| = 7

1As is customary, the product is henceforth written without the dot.
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9.2 Valid Equations

The most general form of a linear equation of a system netN
is

equation
f1(p1) + . . .+ fk(pk) = a, (13)

wherep1, . . . , pk are the places ofN . They are thevariables
of the equation.f1, . . . , fk are functions of the form

fi : M → A, (14)

whereM is the set of all multisets that can occur as markings
of places ofN . The setA is an arbitrary set, whose elements
can be added. In particular,a is an element ofA in Eq. (13).

A functionfi is often the identity function. In this case, the
tokens inpi are themselves used in the equation.fi is also often
the cardinality function, in which case the number of tokensin
pi is used in the equation.A is often the setM of multisets,
as in Eqs. (1) and (3), or the set of natural numbers or integers,
as in Eqs. (6), (7) and (10). Other variations will be introduced
later.

An equation of the form (13)is valid in a marking M of N
if

f1(M(p1)) + . . .+ fk(M(pk)) = a. (15)

An equationis valid in N if it holds in each reachable mark-
ing of N . If a subtraction is defined on the setA, then “−”
may also occur in place of “+” in Eq. (13), and equations may
be transposed in the usual way. In the model of the cookie
vending machine in Fig. 2.1, for instance

|H| − 2|B|+ 2|F| = 7, and

|H| = cont(E) + 2|B|.

9.3 Example: Dining Philosophers

The system of five thinking and dining philosophers was for-
mulated by E.W. Dijkstra in the mid-1960s as an illustrationof
a synchronization problem [19]. Five philosophers sit around
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a table. Initially, between each two neighboring philosophers
lies a single chopstick. As an example showing the role of
functions (and the multiple occurrence of a variable) in valid
equations, Fig. 9.1 shows this system in its initial state: all five
philosophersp1, . . . , p5 are thinking, no philosopher isdining
and all five chopsticksg1, . . . , g5 areavailable. Obviously, a
philosopher needs two chopsticks to start dining (transition t).
So in order to do this, a philosopherpi picks up the chopstickgi
to his left and the chopstickgi−1 to his right (withg0 =def g5).
Two neighboring philosophers can thus never dine at the same
time. When the philosopher has finished dining, he puts his
chopsticks back (transitionu) and again devotes himself to
thinking.

g1...g5

p1...p5
x x

x x

(x)

(x)

(x)

(x)

dining

available

thinking

For i = 1, ... , 5:

 (pi) =def gi
 (pi) =def gi-1, with g0 =def g5

u t
r r

r

l l

l

e

Figure 9.1: The five philosophers

The equation

thinking + dining = [p1, . . . , p5]

is obvious: each philosopher is either thinking or dining. The
equation l([p1, p3])

= [l(p1), l(p3)]

= [g1, g3]available + l(dining) + r(dining) = [g1, . . . , g5] (16)

is more interesting: each dining philosopher corresponds to
his two chopsticks. The functionsl andr are only defined for
single philosophers in Fig. 9.1. In Eq. (16), however, we apply
them tosetsof philosophers. We can generalize a functionf
from single elements to multisets as follows:

f([a1, . . . , an]) =def [f(a1), . . . , f(an)].
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A little less transparent is the intuitive meaning of the valid
equation

l(thinking) + r(thinking) - available = [g1, . . . , g5]. (17)

9.4 Valid Inequalities

Using functionsfi : M → A as in Eq. (14), it is also possible
to constructinequalitiesanalogously to equations as shown in
(13):

inequality f1(p1) + . . .+ fk(pk) ≤ a.

This only works, however, if an order≤ is defined on the set
A. Common examples of this are multisets (see Section 2.3)
and the sets of natural numbers or integers. The relation “≤”
may also be replaced with “<”, “≥” or “>” (in principle, pred-
icates that are even more general are possible). Equations (11)
and (12) show examples of inequalities. Thevalidity of suchvalid inequality

an inequality in a markingM of a system netN is defined
analogously to Section 9.2.

From the definition of markings, it follows that for each sys-
tem netN and each placep of N : M(p) ≥ [ ] for each marking
M . Thus thecanonical inequality

canonical inequality p ≥ [ ]

holds for each placep of N . From this, it also immediately
follows that|p| ≥ 0.

9.5 Equations and Inequalities of Ele-
mentary System Nets

For an elementary system netN , equations according to (13)
often take the special form

n1 · p1 + · · ·+ nk · pk = n0,

wheren0, . . . , nk are integers. Although a placep always holds
a natural numberM(p) of tokens, the formalism has to operate
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a

E

B C

b

H

F

G

d

e

A

De

c

Figure 9.2: Abstract variant of the cookie vending machine

on integers to support subtraction. The factorsni often take
the value1 and are not written. In the abstract variant of the
cookie vending machine in Fig. 9.2, for instance, the following
equations hold:2

A + D = 1, B + G = 1, E + F = 5,
H + G + F = 6, E + B − H = 0.

In addition, the following inequalities hold:

H + C ≤ 5 and E + B + C ≤ 5.

In systems with communicating processes, the control flow
of each individual processP can be represented as an equation
of the form

p1 + . . .+ pn = 1, (18)

C

B

A

G

F

E

D

a

b

c

e

d

f

e e

meaning that the control flow ofP runs through the places
p1, . . . , pn. An example of this is the system of mutual exclu-
sion: the control flows of the processesl andr correspond to
the equations

A + B + C = 1 and E + F + G = 1. (19)

The property of mutual exclusion is described by the inequality

C + G ≤ 1. (20)

2For better readability, the cardinality bars are henceforth omitted in
equations of elementary system nets.
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The control flows of the two processes of the crosstalk algo-
rithm are likewise described by the equations

A + B + C = 1 and D + E + F = 1.

An example of a factorni > 1 is the equation

B

F

A D

c

g

I

L

b

f

h

d

K

H

G

J

a

e

C

E

ji

e

e

2A + B + C + D + E = 2

in the elementary system net in Fig. 9.3.
A valid equation of the form (18) corresponds to a special

subgraph of the respective Petri net. This subgraph consists
of the placesp1, . . . , pn used in the equation, and all adjacent
transitions. In the mutual exclusion system with its valid equa-
tions (19), for instance, the placesA, B andC, together with all
adjacent transitions, form a circle (likewise,E, F andG). The
valid equation

C + D + G = 1

with the branching placeD forms a subgraph consisting of two
circles. In general, the subgraph contains with each placepi all
its adjacent transitions and with each transitiont exactly one
place in•t and one place int•.

E

D

A

C

B

a

b

c

d

e

f

Figure 9.3: Technical example with2A + B + C + D + E = 2

9.6 Modulo Equations

The value rangeA of the functionsfi in Eq. (14) sometimes
consists of the two values0 and1 with themodulo-2 addition,
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that is,
1 + 1 = 0.

Figure 9.4 shows an elementary system netN in which the
modulo-2 equation

A + B + E + F = 0

holds, where+ is the modulo-2 addition. From this equation it
follows, for instance, that no markingM with M(A) = 1 and
M(B) = M(E) = M(F) = 0 is reachable inN .

A

B

C

D

a b c d e

E

F

G

H

Figure 9.4: Elementary system net with the valid modulo-2 equationA +
B + E + F = 0

As another example, in Section 13.10 we will use a modulo-
2 equation to prove central properties of the kindergarten game
from Section 4.6.

9.7 Propositional State Properties

It is often convenient to formulate state properties as logical
expressions, as, for instance, for the cookie vending machine:
“If a signal is pending, then thestorage contains at least either
a rectangular or a round packet.” or “If thestorage still con-
tains all the packets of the initial marking, thensignal andcash
box hold equally many tokens (that is, at most one).” For the
mutual exclusion system: “The left process is not critical or
the key is not available.” Or for the crosstalk algorithm (Sec-
tion 3.4): “If the left process iswaiting, then eithersentl or
confirmedr or finishedr contains a token.”
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To formulate such expressions, it is necessary to combine
valid equations and inequalities (i.e., state properties)via log-
ical operations. For two equations or inequalitiesα andβ, we
define the logical negation¬α of α and the logical “and”α∧β
of α andβ in a markingM of a system netN as follows:

¬α holds inM iff α does not hold inM,

α ∧ β holds inM iff α andβ both hold inM.

state property With this, we can formulatepropositional state properties.
In the initial markingM0 of Fig. 9.4, for instance,(A = 1) ∧
(B = 1) as well as¬(C = 1) hold. Other logical operations
like α ∨ β (“α or β”) andα → β (“if α, thenβ”) can then, as
usual, be derived as¬(¬α ∧ ¬β) and¬α ∨ β, respectively.

A propositional expressionα holds in a system netN if α
holds in each reachable marking ofN . The following expres-
sions, for instance, hold

• in the cookie vending machine in Fig. 2.1:

B ≥ 1 → (H ≥ [ ] ∨ H ≥ [ ]) and (21)

H = [ , , , , , , ] → (|B| = |F| ∧ |B| ≤ 1),
(22)

• in the mutual exclusion system in Fig. 4.4:

C = 0 ∨ D = 0, (23)

• in the crosstalk algorithm in Fig. 3.8:

B = 1 → (G = 1 ∨ H = 1 ∨ L = 1). (24)

These examples support the observation that propositional
state properties are often composed of very simple equations
and inequalities. The followingdot notationis therefore very
convenient: for a system netN with a placep, an element
u ∈ U and a multisetA ∈ M of the universeU

p.u denotesp ≥ [u] and
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p.A denotesp ≥ A.

If a placep holds only black tokens, then

p denotesp ≥ [•].

For a setP = {p1, . . . , pn} of places, we simply write

P or p1 . . . pn instead ofP = p1 ∧ . . . ∧ pn. (25)

The above examples (21) through (24) then become

B → (H. ∨ H. ),

H.[ , , , , , , ] → (|B| = |F| ∧ |B| ≤ 1),

¬C ∨ ¬D,

B → (G ∨ H ∨ L).

In the mutual exclusion system in Fig. 4.3

AE → D andCE → ¬D.

We occasionally use the notation

M |= α orN |= α

to express that a propertyα holds in a markingM or in a sys-
tem netN , respectively.

Theorem 5 (Validity Theorem for Propositional Properties).
For a system netN and propositional propertiesα andβ, the
following hold:

(a) N |= α ∧ β iff N |= α andN |= β.

(b) If notN |= α, then not necessarilyN |= ¬ α.

(c) If N |= α or N |= β, thenN |= α ∨ β.

(d) If N |= α, thenN |= β → α.

(e) If N |= ¬α, thenN |= α → β.
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Exercises

1. Which of the following equations and inequalities hold in the system net in Fig. 5.7?

(a) 2A + B + C + D + E = 2

(b) 2A + B + C + D + E + F + G = 3

(c) F + G = 1

(d) B + C = D + E

(e) C + E + G ≤ 1

(f) B + D + F ≤ 1

2. Construct a valid equation for each of the following systemnets. The factor in front of each
place must not equal 0.

(a) Fig. 4.1

(b) Fig. 4.20

(c) Fig. 9.5

B A

c

a

b

C

Figure 9.5: System net

3. Show that the following equations hold in the system net inFig. 2.1.

(a) |H| = cont(E) + 2|B|

(b) |H|+ 2|G| = cont(E) + 2

4. What property follows from the modulo-2 equationA + B + E + F = 0 for the number of
tokens in the system net in Fig. 9.4?

5. Prove the five propositions of Theorem 5.

6. Show that the converse of each proposition (c)–(e) of Theorem 5 does not hold.
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7. Which of the following statements hold in the system netN of the five philosophers in
Fig. 9.1?

(a) N |= thinking.pi → ¬dining.pi

(b) N |= dining.pi → ¬available.l(pi) ∧ ¬available.r(pi)

(c) N |= thinking.pi → available.l(pi) ∧ available.r(pi)

(d) N |= available.gi−1 → thinking.pi

(e) N |= available.gi → thinking.pi−1

(f) N |= available.gi → ¬thinking.pi−1

* 8. The following refers to this chapter’s postcript “The Polite Philosophers” (next page):

(a) Construct an “impolite” distributed run of the system netin Fig. 9.1.

(b) Construct three more behavioral patterns of polite philosophers.

(c) Generalize the case ofn = 5 philosophers to an arbitrary number of philosophers.
How many distributed runs exist? How many runs have distinctstructures?

(d) Expand the system net in Fig. 9.4 such that only the politeruns are generated.

Further Reading

Each modeling language formulates system properties in itsown way: as a combination of and
a compromise between what is needed in practice and what can be proven algorithmically. For
Petri nets we use expressions with places as variables and, with them, formulate equations and
inequalities. In the literature, such equations and inequalities are usually presented together
with the corresponding techniques for proving their validity. Kurt Lautenbach [43] was the first
to propose equations as a means to formulate properties of elementary system nets, and place
invariants (Chapter 11) as a means to prove their correctness.

In addition to the linear and modulo equations presented in Sections 9.5 and 9.6, one could
also discuss nonlinear equations. As an alternative to inequality (20), for instance, the mutual
exclusion property could also be described via

C · G = 0.
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The Polite Philosophers

We return to the example of the five philosophers in Section 9.3, but only considerpolite
philosophers now: Two neighboring philosophers arepolite to each other if they use their shared
chopstickalternatingly. We then show that the system’s distributed runs take clear and very
regular structures if all neighbors are polite to each other.

A partial distributed run in which the philosopherp2 picks up his chopsticks, eats and then
returns his chopsticks takes the form

t u

available.g
1

thinking.p
2

available.g
2

available.g
1

thinking.p
2

dining.p
2

available.g
2

(26)

(the transitionst andu occur in the modex = 2). Each “polite” distributed run of the system
net in Fig. 9.1 is composed of such “meals” of the philosophers.

For convenience, partial runs of the form (26) can be simplified into

p
2

.

Then

p
1

p
1

p
1 p

1

p
2 p

2
p

2
p

2 p
2

p
3 p

3
p

3 p
3

p
4 p

4 p
4

p
4 p

4

p
5

p
5 p

5
p

5

p
1 p

1 p
1

glue
1

glue
2

glue
1

glue
2

p
1

(27)
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shows a typical distributed run of the system of polite philosophers. Occurrences ofp1 lying
directly on top of each other at the top or bottom edge are identical here.

Different initial markings eventually assume the behavioral pattern (27). It can be intuitively
characterized by “Whilepi is dining, pi+2 passes his right chopstick topi+3.” In a different
patternpi+3 passes his left chopstick topi+2. There exist two more patterns in which the polite
philosophers dine “around” the table. Further details are described in [66].



Traps and Cotraps of
Elementary System Nets

Chapter 10

Traps form the basis of a particularly simple technique for
proving inequalities. They take advantage of the structureof
Petri nets, in particular, the simple rule for the occurrence of
transitions and the alternating pattern of places and transitions.
We will consider traps of elementary system nets first.

10.1 Traps of Elementary System Nets
trap

if

q

p t

then

trap:{p, q, . . .}

Technically, atrap of an elementary system netN is a subset
Q of the places ofN such that for each transitiont of N the
following holds:

If there exists a placep ∈ Q such thatp ∈ •t,

then there also exists a placeq ∈ Q such thatq ∈ t•.
(1)

Intuitively speaking: “A transition that takes something out of
Q also puts something back in.”

A a B b C

marked trap:{A,B,C}

unmarked traps:{B,C} , {C}

A trapQ of an elementary system netN is calledmarked in
a markingM if there exists at least one placeq ∈ Q such that
M(q) ≥ 1. If Q = {q1, . . . , qr} is a trap marked inM , then
obviously

M(q1) + . . .+M(qr) ≥ 1. (2)

For each stepM
t

−→ M ′ of N there exist only two possi-
bilities now: either there exists a placep ∈ Q such thatp ∈ •t,
in which case, according to (1), there also exists a placeq ∈ Q
such thatq ∈ t•. ThenM ′(q) ≥ 1 and thus E

D

A

C

B

trap:{A,C,D,E}

initially marked trap

M ′(q1) + . . .+M ′(qr) ≥ 1. (3)

Or there exists no such placep. Then for each placeq ∈ Q :
M ′(q) ≥ M(q), in which case (3) also holds. Hence, a marked
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trap will remain marked. Of particular interest areinitially
markedtraps, that is, traps marked in the initial markingM0:

Theorem 6 (Trap Theorem). Let N be an elementary system
net with an initially marked trapQ = {q1, . . . , qr}. Then the
following inequality holds inN :

q1 + . . .+ qr ≥ 1. (4)

The converse is not generally true: a valid inequality of the
form (1) does not imply that the set{q1, . . . , qr} is a trap.

A B

C

D

C + D ≥ 1, but {C,D} is not a

trap
10.2 Cotraps

cotrap
As a counterpart to a trap, acotrapof an elementary system net
N is a subsetQ of the places ofN such that for each transition
t of N the following holds:

A a B b C

cotraps:{A,B,C}, {A,B}, {A}

If there exists a placep ∈ Q such thatp ∈ t•,

then there also exists a placeq ∈ Q such thatq ∈ •t.
(5)

Intuitively speaking: “A transition that puts something into Q
also takes something out.”

Now letQ = {q1, . . . , qn} be a cotrap that is unmarked in a
markingM , that is

M(q1) + . . .+M(qn) = 0. (6)

Furthermore, letM
t

−→ M ′ be a step. Then for each place
p ∈ •t : M(p) ≥ 1. This means, because of Eq. (6), that there
cannot exist a placeq ∈ Q such thatq ∈ •t. Hence, because
of (5), there also cannot exist a placep ∈ Q such thatp ∈ t•.
Then it follows from Eq. (6) that

M ′(q1) + . . .+M ′(qn) = 0.

cotrap

if

q

p t

then

cotrap:{p, q, . . .}

Hence, an unmarked cotrap will remain unmarked. If, dur-
ing a runw, a cotrapQ loses its last token, then no transition
in Q• can occur for the remainder ofw. In particular, a cotrap
may already be unmarked in the initial marking:
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Theorem 7(Cotrap Theorem). LetN be an elementary system
net with an initially unmarked cotrapQ = {q1, . . . , qr}. Then
the following equation holds inN :

q1 + . . .+ qr = 0. (7)

In particular, an unmarked cotrap occurs during a total sys-
tem deadlock, that is, when a markingM does not enable a
single transition. Of interest is the setR of the places that are
unmarked inM : for each transitiont there exists a placep ∈ •t
such thatp ∈ R. Thus,R is an unmarked cotrap. The contra-
position of this argument results in the following theorem.

Theorem 8 (Theorem on Marked Cotraps). LetN be an ele-
mentary system net and letM be a marking ofN that marks
each cotrap ofN . ThenM enables at least one transition.

10.3 The Trap/Cotrap Property

Sometimes the structure of a net guarantees that each reachable
marking marks each cotrap, for instance if each cotrap contains
an initially marked trap as a subset. We define a system netN
to have thetrap/cotrap propertyif: trap/cotrap property

A a B b C

{A} is an initially marked trap

and a subset of each cotrap

Each cotrapR of N contains as a

subset an initially marked trap.
(8)

This definition leads us to:

Theorem 9 (Trap/Cotrap Theorem). LetN be an elementary
system net that has the trap/cotrap property. Then each reach-
able markingM of N enables at least one transition.

Figure 9.3 shows a technical example in which{A,B,C,D}
is a cotrap that does not contain a trap. Thus, Theorem 9 does
not apply. In fact, all tokens can accumulate inE, in which
case no more steps are possible.
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Exercises

1. Construct either a proof or a counterexample for each of thefollowing propositions:

(a) The union of two traps is a trap.

(b) The intersection of two traps is a trap.

(c) The union of two cotraps is a cotrap.

(d) The intersection of two cotraps is a cotrap.

2. Show that in the system net in Fig. 10.1 each cotrap is also atrap. How does this change if
the loop betweena andC is deleted?

A c

a B

b C
Figure 10.1: System net

3. (a) Show that the system net in Fig. 10.2 has the trap/cotrap property.

(b) Which property follows from the observation in (a)?

A

B

C

D

E
Figure 10.2: System net

* 4. Let N be an elementary system net and letQ = {q1, ..., qn} be a set of the places ofN such
that

q1 + ...+ qn = 1.

Prove or disprove the following propositions.

(a) Q is a trap.
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(b) Q is a trap if each transition ofN is enabled at least once.

(c) Replace the above equation with the inequality

q1 + ...+ qn ≥ 1.

Prove or disprove propositions (a) and (b) for this case.

5. Is the setP of all places of a system net a trap? IsP a cotrap?

Further Reading

Traps and cotraps have been known since the 1970s [33]. The name “trap” (German, “Falle”;
French, “siphon”) directly describes the intuitive meaning of this construction. Cotraps origi-
nally came to be known as “deadlocks” or sometimes “siphons”in the literature – a confusing
terminology. In modeling practice, traps occur much more often than cotraps.

In [44] Lautenbach describes linear-algebraic characterizations of and corresponding algo-
rithms for traps and cotraps (called “deadlocks” there). Ofparticular interest for practical ap-
plications are minimal (smallest) traps. How to calculate them efficiently is covered in [80].

To increase efficiency, Wegrzyn and her coauthors [79] utilize satisfiability algorithms found
in propositional logic. The paper also describes a range of other procedures for calculating traps
and cotraps.





Place Invariants of
Elementary System Nets

Chapter 11

Place invariantsare the most important analysis technique for
system nets. They take advantage of theconstant effectof tran-
sitions: each time a transitiont occurs in the modeβ, the same
multisets are moved. The effect of(t, β) is linear. For instance,
if the places in•t hold twice as many tokens, thent may occur
twice as many times. The mathematics for linear behaviors is
the well-known linear algebra with vectors, matrices and sys-
tems of equations. In fact, many aspects of Petri nets can be
represented and calculated with these structures. We startwith
linear-algebraic notation for elementary system nets.

11.1 Vector Representation for Elemen-
tary System Nets

Chapter 3 defines a markingM of an elementary system netN
as a mappingM : P −→ N that maps each placep of N to a
natural number. It is very easy to impose an order on the places
of a system net, for instance, by means of indices of the form
p1, . . . , pk or by alphabetical order. ThenM can be written as
the column vector

A B

Ct

u

N:

M0 =




1
1
0




vector representation of markings

t =




−1
0
1


 u =




1
−1
0




M =




a1
...
ak




whereai is the number of tokens in theith place.
Likewise, each transitiont can be written as a vector

t =




z1
...
zk



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where fori = 1, . . . , kvector representation of transitions

A B

Ct

u

N:

M1 = M0 + t :



0
1
1


 =




1
1
0


+




−1
0
1




M2 = M0 + u :




2
0
0


 =




1
1
0


+




1
−1
0




zi =def





−1, if pi ∈ •t andpi /∈ t•,

+1, if pi ∈ t• andpi /∈ •t,

0, otherwise.

It is generally not possible to reconstruct from the vectort
the input and output places•t andt•, respectively:zi = 0 if no
arc connectspi andt, but also if there exists a loop betweenpi
andt.

With the above vectors and the classic definition of the sum
of vectors, for each stepM

t
−→ M ′ of N :

M ′ = M + t. (1)

This is called thevector representationof steps.

11.2 The Matrix N

It is equally easy to impose an order of the formt1, . . . , tl on
the transitions ofN . Then the column vectorsti together form
thematrixN of N :

matrix representation of a net

N = (t, u) =




−1 1
0 −1
1 0




N . . . j . . .
...
i −1
...
i′ 1
...

pi

tj

pi �

N =def (t1, . . . , tl) =




z1 1 . . . zl 1
...

...
z1 k . . . zl k




Figure 11.1 shows a technical example of an elementary sys-
tem netN and its respective matrixN .

With this construction, for each stepM
tj

−→ M ′ and each
placepi of N :

M ′(pi) = M(pi) +N(j, i).

11.3 Place Invariants

Section 9.5 has shown that a valid equation of an elementary
system netN often takes the form

n1 · p1 + . . .+ nk · pk = n0 (2)
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A

D

BE e

ac

bd

C

N:
N a b c d e
A −1 −1 1
B 1 −1
C 1 1 −1
D 1 1 −1
E 1 −1

Figure 11.1: An elementary system netN with its respective matrixN
(entries of 0 are omitted)

with integersn0, . . . , nk and placesp0, . . . , pk. The number 0
is a possible factor, therefore we can always assumeall places
in their orderp1, . . . , pk in (2).

Valid equations of the form (2) can be derived from solu-
tions of the system of equations

place invariantx ·N = ~0, (3)

where~0 = (0, . . . , 0) is anl-dimensional row vector. A vector
n = (n1, . . . , nk) solves (3) if and only ifn · t = 0 for each
transitiont of N . A solutionn of (3) is called aplace invariant
ofN . With the initial markingM0 of N , the number

equation of a place invariantn0 =def n ·M0

(i.e. n1 · M0(p1) + . . . + nk · M0(pk)) is theconstant ofn.
Equation (2) then is theequation of n. The following theorem
motivates this definition:

Theorem 10 (Elementary Place Invariants Theorem). Let N
be an elementary system net with a place invariantn. Then the
equation ofn holds inN . N t u M0 n

A −1 1 1 1
B −1 1 1
C 1 1

n ·M0 = 2

A + B + C = 2

The equation derived from a place invariant is often called
an invariant itself.

To prove this theorem, we have to show thatn · M = n0

for each reachable markingM . The equation trivially holds
for M = M0. Furthermore, each reachable markingM can be
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reached fromM0 with a finite number of steps. Therefore, it
suffices to show thatn ·M = n ·M ′ for each stepM

t
−→ M ′.

This is now quite simple:

n ·M ′ = n · (M + t) (according to (1))

= n ·M + n · t (linear algebra)

= n ·M + 0 (becausen is a place invariant)

= n ·M (linear algebra).

Figure 11.2 shows the initial markingM0 of the system net
N in Fig. 11.1 as a vector, as well as four place invariants of
N together with their respective valid equations that have been
derived from them.1

M0 i1 i2 i3 i4
A 1 1 1 2
B 1 1 1
C 1 1 −1
D 1 1 1
E 1 1 2

from i1: A + C + E = 1
from i2: A + B + D + E = 1
from i3: 2A + B + C + D +2E = 2
from i4: B − C + D = 0

Figure 11.2: Initial markingM0, place invariantsi1, . . . , i4 and their re-
spective equations forN in Fig. 11.1

The converse of Theorem 10 holds under the mild assump-
tion that each transition is enabled by at least one reachable
marking:

Theorem 11(Converted Place Invariants Theorem). LetN be
an elementary system net such that for each transitiont there
exists a reachable markingM that enablest. Furthermore, let
Eq. (2) hold inN . Thenn = (n1, . . . , nk) is a place invariant
of N with the constantn0.

For a proof, consider a reachable stepM
t

−→ M ′. As in the
proof of Theorem 10 above, it follows thatn · t = 0. Such a
step exists for each transitiont.

1To improve readability, the place invariants are written ascolumn vec-
tors although, in fact, they are row vectors.



11.4. Positive Place Invariants 127

The same argument can be used to prove the validity of
modulo-2 equations. For the net in Fig. 9.4, for instance,
(1, 1, 0, 0, 1, 1, 0, 0) is a place invariant (with the places or-
dered alphabeticallyA, . . . , H). This invariant has the constant
4, which is congruent to 0 (modulo 2). The equationA + B +
E + F = 0, already discussed in Section 9.6, can be derived
from this.

Place invariants offer a powerful technique for proving prop-
erties of elementary system nets. For instance, all equations
mentioned in Section 9.5 can be directly derived from place
invariants.

A

B

C

D

a b

c

d e

E

F

G

H

11.4 Positive Place Invariants

The term “invariant” particularly applies to place invariants
with nonnegative entries.

A place invarianti of an elementary system netN is called
positive for a placep of N if positive place invariant

i(p) > 0 and

i(q) ≥ 0 for each placeq of N.

From this it follows that:

Theorem 12 (Positive Place Invariants Theorem). A placep
with a positive place invariant is bounded.

p thus has a numbern such thatM(p) ≤ n for all reachable
markingsM of N . The converse is not generally true.

Particularly simple and also quite common are positive place
invariants with equations of the form

p1 + . . .+ pk = 1.

An example is the equationA + C + E = 1 for Fig. 11.1. These
places are connected via arcs and transitions (in this casea, c,
d ande) and thus form “paths through the net that a token can
traverse.” Such a path contains

• each involved place withall its incoming andall its outgo-
ing arcs,
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• each involved transition withexactly oneincoming andex-
actly oneoutgoing arc.

Figure 11.3 indicates such a path with boldfaced places, tran-
sitions and arcs.

A

D

BE e

ac

bd

C

N:

Figure 11.3: Paths of the place in-
variant of the equationA + C + E
= 1

The carrier of a positive place invarianti is the set of all
placesp with i(p) > 0. Then:

Theorem 13(Invariant Trap/Invariant Cotrap Theorem). The
carrier of a positive place invariant of a system netN is also
a trap and a cotrap ofN .

It is also possible in Eq. (2) to replace the integersn0, . . . , nk

with rational numbers. Solving these equations would then be
even simpler. However, rational numbers would inhibit an in-
tuitive understanding here.
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Exercises

1. Exercises relating to Fig. 11.1:

(a) Construct two place invariants that are linearly independent. Derive their respective
equations.

(b) Construct a place invariant whose carrier contains all places, and derive its respective
equation.

2. Which of the following equations and propositional formulas hold in the system net in
Fig. 11.4? Either prove them with the help of place invariants or construct a counterex-
ample.

(a) A + 2B + C + D + E = 2

(b) A + B + C = 1

(c) E → A ∨ C ∨ D

(d) A → E

D de

aA B

bc

C

E

Figure 11.4: System net

3. Construct a counterexample for the converse of each of the two theorems in Section 11.4.

4. Derive all the equations and inequalities shown in Section 9.5 from place invariants and
traps of their respective system nets.

5. LetN be an elementary system net in which each place has a positiveplace invariant. Show
that there exists a single place invariant that is positive for all places ofN .
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Further Reading

Place invariants of elementary system nets as well as the matrix of a net and the vector repre-
sentation of markings and steps were introduced by Lautenbach in [43].

With modulo-n invariants, Desel et al. [17] broke new ground. The matrix representation
and the concept of place invariants seamlessly carry over toValk’s self-modifying Petri nets
[75]: for a netN with an arc(t, p), whose weight is equal to the current number of tokens in the
placeq, the matrix entryN(t, p) =def q · p is generated. Equations for the calculation of place
invariants are thus no longer linear.

Thecalculationof place invariants is complex, because only integer solutions to the system
of Eqs. (3) are valid; [22] explains the details. In [80], Yamauchi and his coauthors exploit
Theorem 13 to derive an efficient heuristic that discards candidates that are neither traps nor
cotraps.



Combining Traps and Place
Invariants of Elementary
System Nets

Chapter 12

When two valid equations or inequalities are added or sub-
tracted, the result is again a valid equation or inequality.We
will show that such calculations substantially increase the ex-
pressive power of traps and place invariants. We will start with
equations and inequalities of elementary system nets.

12.1 Calculating with Equations and In-
equalities

According to Eq. (2) in Section 11.3, an equation of an ele-
mentary system net takes the form

G1 : n1 · p1 + . . .+ nk · pk = n0.

Theadditionof an equation

G2 : m1 · p1 + . . .+mk · pk = m0

toG1 yields the equation

sum of equationsG1 +G2 : (n1 +m1) · p1 + . . .+ (nk +mk) · pk = n0 +m0.

Thescalar productof G1 and a factorz yields

scalar product of an equation and a numberz ·G1 : z · n1 · p1 + . . .+ z · nk · pk = z · n0,

wherez may very well be a negative number. Likewise, calcu-
lations with inequalities are done according to the usual rules.
These operations retain the validity of equations and inequal-
ities, and we can exploit this fact for a very powerful proving
technique:
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B

c

A C

ED

a b

Figure 12.1: Technical ex-
ample:A + E ≤ 1

Theorem 14 (Addition Theorem of Valid Equations and In-
equalities). LetN be an elementary system net. The sum of two
equations or inequalities that hold inN , as well as the product
of such an equation or inequality with a factorz, again hold in
N .

As a proof, consider a markingM that is reachable inN .
Thus,G1 andG2 hold inM . Becauseni ·M(pi)+mi ·M(pi) =
(ni+mi)·M(pi) for (i = 1, . . . , k), the sumG1+G2 also holds
in M . Forz the argument is analogous.

These apparently obvious calculating steps massively in-
crease the expressiveness of the information that can be de-
rived from traps, place invariants and the canonical inequalities
p ≥ [ ] (cf. Section 9.4).

Figure 12.1 shows a technical example systemN with the
valid inequality

A + E ≤ 1. (1)

To prove (1) we need the following two equations derived from
place invariants:

A + B + C = 1, (2)

D + E = 1 (3)

as well as the inequality

B + C + D ≥ 1 (4)

derived from the initially marked trap{B,C,D}. With this, (1)
is the result of (2)+ (3)− (4).
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12.2 State Properties of the Mutual Ex-
clusion System

The central property of the mutual exclusion system in Fig. 3.2
is

C + G ≤ 1. (5)

This follows from the place invariant

C

B

A

G

F

E

D

a

b

c

e

d

f

e e

C + D + G = 1

by subtracting the canonical inequality

D ≥ 0

of D (i.e., the addition of−D ≤ 0).

12.3 State Properties of the Crosstalk
Algorithm

Figure 12.2 expands the crosstalk algorithm in Fig.5.2 by the
six placesQ, R, S andU, V, W, whereQ, R andS “count” the
cycles of the left agentl, ordered by three properties:

Q-cycle: l sends a message and receives a
confirmation.

R-cycle: l sends a message and receives a
message (crosstalk).

S-cycle: l receives a message and sends a
confirmation.

Likewise, the placesU, V andW “count” the cycles of the
right agentr, ordered by the respective properties ofr.

Now we want to show that the cycles “match each other”:
if both agents are in their idle states, each two corresponding
places hold equally many tokens. Technically, this means for
each reachable markingM with M(A) = M(D) = 1:



134 Combining Traps and Place Invariants of Elementary System Nets

B

F

A D

c

g

I

L

b

f

h

d

K

H

G

J

a

e

C

E

ji

e

eQ

R

S

U

V

W

Figure 12.2: The crosstalk algorithm, expanded by six countersQ, R, S,
U, V, W

M(Q) = M(W) (6)

M(R) = M(V) (7)

M(S) = M(U) (8)

To prove (6) we first derive a series of valid inequalities:

(i) Q + H − W = 0 place invariant
(ii) H ≥ 0 canonical inequality
(iii) Q − W ≤ 0 (i) − (ii)
(iv) Q ≤ W (iii), transposition
(v) W − H − Q = 0 place invariant
(vi) D + H + I + J + K = 1 place invariant
(vii) I ≥ 0
(viii) J ≥ 0
(ix) K ≥ 0
(x) W − Q + D ≤ 1 (v)+(vi)-(vii)-(viii)-(ix)

For each reachable markingM with M(D) = 1:
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(xi) M(Q) ≤ M(W) according to (iv)
(xii) M(W) ≤ M(Q) according to (x)

(6) now follows from (xi) and (xii). Propositions (7) and (8)
are derived analogously.

12.4 Unstable Properties

A majority of the important state properties of an elementary
system netN can usually be formulated as valid equations or
inequalities (cf. Section 9.2). In Sections 9.4, 10.1 and 11.3 we
introduced three techniques for deriving valid equations and
inequalities:

• For each placep of N , the canonical inequality

p ≥ 0

of p holds, based on the rules for the occurrence of transi-
tions.

• Each initially marked trap generates a valid inequality of
the form

p1 + . . .+ pk ≥ 1,

wherep1, . . . , pk are the places ofN .

• Each place invariant generates a valid equation of the form

n1 · p1 + . . .+ nk · pk = n0,

wheren0, . . . , nk are integers, andp1, . . . , pk are the places
of N .

stable state propertyAn equation or inequalityα is stablein an elementary sys-
tem net if for each stepM

t
−→ M ′ of N the following holds:

If α holds inM , thenα also holds inM ′.

It is irrelevant here whether or notM is reachable inN . It
is easily asserted that each canonical inequality as well aseach
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equation or inequality derived from a trap or place invariant is
stable.

However, important valid equations or inequalities are often
unstable. A typical example is the inequality (1) for the system
net in Fig. 12.1. This inequality holds in the (unreachable)

markingABD. The stepABD
c

−→ ABE is a step ofN , where
the reached markingABE violates the inequality (1).

B

c

A C

ED

a b

unstable property:A+E≤ 1

Similarly, the inequality (5) for the mutual exclusion system
holds in the (unreachable) – markingBDG. After the stepBDG

b
−→ CG the reached markingCG violates (5).

C

B

A

G

F

E

D

a

b

c

e

d

f

e e Nevertheless, it was possible to prove the inequalities (1)
and (5) for the system nets in Figs.12.1 and 12.2: the addition
of valid, stable equations and inequalities yields valid equa-
tions and inequalities that may be unstable.

In practice, most important state properties can be proven
by adding canonical inequalities as well as equations and in-
equalities derived from traps and place invariants. Technical
examples like modulo equations (cf. Section 9.6) or properties
like “The number of tokens inp1, . . . , pn is a prime number.”
rarely occur in practical applications.
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Exercises

1. Find a proof for each of the inequalities given in (a), (b) and (c), Figs. 12.3–12.5. Do this by
adding equations and inequalities derived from place invariants, initially marked traps and
canonical inequalities of the respective system nets.

(a)

A

B

C

D

Edb

e

ca

Figure 12.3:B + C ≤ 1 is valid

(b)

A B

b

a

c

D

C

Figure 12.4:C + D ≥ 1 is valid

(c) B

A

D

C

E

F

G

c

d

e

f

a

b

g

Figure 12.5:C + D ≤ 1 is valid

2. In the light/fan system in Fig. 7.2, the cold transitionsswitch light on andswitch light off are
the user’sactions. The transitionsfan starts andfan stops are the system’sreactions. Show
that there cannot occur more reactions than actions.
Hint: Expand Fig. 7.2 by a placeE, as shown in Fig. 12.6. Evidently,E is marked if and
only if there have occurred more actions than reactions. Nowshow that whenever a reaction
is possible in the original system in Fig. 7.2, the placeE in the expanded system is marked.
(Thus, the corresponding reaction is also possible in the expanded system.)
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B

a

A

b

c

d

DCE

Figure 12.6: Light/fan system from Fig. 7.2 with changed denotations and expanded by placeE

3. Show that the propositions (7) and (8) hold in the system net in Fig. 12.2.

* 4. Prove the following: each equation derived from a place invariant, each inequality derived
from an initially marked trap and each canonical inequalityis stable.



Traps and Place Invariants of
Generic System Nets

Chapter 13

Analogously to Chapters 10 and 11, traps and place invari-
ants can also be formulated for generic system nets. Traps are
less important here, and we will show only one example. The
place-invariant calculus uses expressions as they occur inarc
labelings.

13.1 Traps of a System Net

If there exists a placep ∈ Q

such thatp ∈ •t, then there also

exists a placeq ∈ Q such that

q ∈ t•.

inequality of a trap

Traps of elementary and generic system nets are structurally
identical. Condition (1) in Chapter 10 suffices. Of interest is
the following inequality derived from an initially marked trap
Q = {q1, . . . , qr}:

|q1|+ . . .+ |qr| ≥ 1. (1)

Its validity is obvious. One can often be even more precise, as
Fig. 13.1 shows. Iff(f(ui)) = ui for i = 1, . . . , n, then the in-
equalityA+C+f(D) ≥ [u1, . . . , un] holds for the trap{A,C,D}.

f(x)

a b

c

d

e

A

B

C

D

E

F

f(x)

f(x)

x

x

x

x x

x

x

f(x)

x

x
x

u
1
...u

n

u
1
...u

n

Figure 13.1: Trap{A, C, D} with the inequalityA + C + f(D) ≥
[u1, . . . ,un], holding if f(f(ui))=ui
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13.2 Sum Expressions

As described in Chapter 2, the arcs of a system netN are la-
beled with expressions. Typical expressions of this type are
constants like �1 , , , •, variables likex, y and expressions
like x-1 or f(x). However, they can also be more complex, as
for instance,(x+1)mod 60 in Fig. 4.9. In general, an arc can be
labeled with several expressions, for instance, withl(x) andr(x)
as in Fig. 9.1. Section 2.6 explains that such a set of expres-
sions (with values assigned to the variables) describes a mul-
tiset. We now use expressions to formulate the sum of such

sum expression
multisets: thesumb1 + b2 of two expressionsb1 andb2 as well
as theinverse−b of an expressionb are again expressions. As
with numbers, we writeb1 − b2 for b1 + (−b2) and assume a
special expression “0” for the empty multiset.

By applying the following arithmetic rules, we cancalcu-
latewith such expressionsb1, b2, b3 just as with numbers:

b1 + b2 = b2 + b1,

(b1 + b2) + b3 = b1 + (b2 + b3),

b1 + 0 = b1,

b1 − b1 = 0.

Such expressions together with their arithmetic rules are called
sum expressions. With these arithmetic rules, a sum expression
describes a multiset:

b1 + . . .+ bn describes[b1, . . . , bn] and0 describes[ ]. (2)

13.3 Multiplying Sum Expressions

product of sum expressions
For technical reasons, we need to be able tomultiply sum ex-
pressions. Letb1 andb2 be sum expressions, whereb1 contains
at most one variable. However, this one variable may occur
several times inb1, as for instance, the variablez in g(z, h(z)).
We define theproduct b1 · b2 to be again a sum expression.
It is generated by replacing each occurrence of the variable
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in b1 with b2. As an example, consider the productb1 · b2 of
b1 = g(z, h(z)) andb2 = f(x, y):

g(z, h(z)) · f(x, y) = g(f(x, y), h(f(x, y)).

Likewise, the productb1 · b2 of b1 = f(x) andb2 = (y + z) is
generated as follows:

f(x) · (y + z) = f(y + z).

In particular,b1 · b2 = b1 if b1 does not contain any variables at
all; andb1 · b2 = b2 if b1 = x.

The productb1 · b2 evidently contains only the variables of
b2. In particular, “real” sum expressions may also occur in
such products as the arguments for functions, as inf(x + y).
With additional arithmetic rules, such expressions can always
be transposed into “normal” sum expressions. For each unary
functionf :

calculation rules
f(b1 + b2) = f(b1) + f(b2),

f(−b) = −f(b),

f(0) = 0.

13.4 Applying a Sum Expression to a
Multiset

As described in Section 2.6, each expressionb with at most
onevariablex for an elementu of a universeU can be eval-
uated by replacing each occurrence ofx with u. The result is
again an element ofU , written asb(u). Generalized to include
multisets, let

b([u1, . . . , un]) = [b(u1), . . . b(un)]. (3)

If u1, . . . , un are considered expressions (without variables),
then (3) together with (2) corresponds to the equation

b · (u1 + . . .+ un) = b · u1 + . . .+ b · un.

In (3) the sum expressionb represents a function that isap-
plied toa multiset[u1, . . . , un] and again yields a multiset.
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13.5 The Matrix N of a System NetN

matrix of a system net
In the following sections, letN be a system net with the places
p1, . . . , pk and the transitionst1, . . . , tl. The labelingpitj of
the arc frompi to tj generally consists ofseveralexpressions
a1, . . . , an. They are henceforth written as a sum expression
a1 + . . . + an. Likewise, the labelingtjpi of the arc fromtj to
pi forms a sum expression. With this, we construct the entry
N(i, j) of thematrixN of N as the sum expression

N(i, j) =def tjpi − pitj.

Figure 13.2 shows six technical examples of generic system
netsNi and their respective matricesN i. To improve readabil-
ity, occurrences of the term “0” are omitted.

13.6 The Place Invariants of a System
Net

Now let b = (b1, . . . , bk) be a vector of sum expressionsbi
(i = 1, . . . , k), each containing at most one variable.b solves
the system of equations

x ·N = 0 (4)

if and only if for eachj:

b1 ·N(1, j) + . . .+ bk ·N(k, j) = 0.

Each solution to (4) is aplace invariantof N . Figure 13.2place invariant of a system net
shows place invariants of the system netsN1, . . . , N6. The in-
variant ofN5 presupposes the inverse functionsf−1 andg−1.
The invariant ofN6 only holds if f(f(x)) = x.

The variable of each sum expressionbi of a place invariant
(b1, . . . , bn) of a system netN is arbitrary. However, it is often
convenient to use theith place ofN as the variable forbi. In
Fig. 13.2 we follow this convention.
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N1

B

u v

A t
x f(x)

g(x)

N1 t i M0

A -x f(A) + g(A) u + v
B f(x) + g(x) B

equation ofi:
f(A) + g(A) + B =
[f(u), g(u), f(v), g(v)]

N2
B

u v

A
x

f(x)

C
g(x)

t

N2 t i M0

A -x f(A) + g(A) u + v
B f(x) B
C g(x) C

equation ofi:
f(A) + g(A) + B + C =
[f(u), g(u), f(v), g(v)]

N3

x
f(x)

y

u

v

t C

g(y)

A

B

N3 t i M0

A -x f(A) u
B -y g(B) v
C f(x) + g(y) C

equation ofi:
f(A) + g(B) + C =
[f(u), g(u)]

N4

x

f(x,y)

y

u

v

t C

g(x,y)

A

B

N4 t i M0

A -x |f(A)| u
B -y |g(B)| v
C f(x,y) + g(x,y) |C|

equation ofi:
|A|+ |B|+ |C| = 2

N5
B

u v

A x

f(x)

C

g(x)

x

t

u

with f−1(f(x)) = x
andg−1(g(x)) = x

N5 t u i M0

A -x -x A u + v
B f(x) f−1(B)
C g(x) g−1(C)

equation ofi:
A + f−1(B) + g−1(C) =
[u, v]

N6
x

f(x)

u

tA

with f(f(x)) = x

N6 t i M0

A f(x)-x A + f(A) u

equation ofi:
A + f(A) = [u, f(u)]

Figure 13.2: System nets with matrices, invariants and equations derived
from them
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13.7 The Constant of a Place Invariant

The initial markingM0 of N determines the value of the con-
stant of a place invariantb = (b1, . . . , bk). Thereby, the ex-
pressionsbi are applied to the initial marking of the placespi
(cf. Section 13.4). The resulting multisets are then added.The
constant ofb is thus the multiset

constant of a place invariant b1(M0(p1)) + . . .+ bk(M0(pk)).

Example: The constant of the place invarianti ofN1 in Fig. 13.2
is the multiset[f(u),g(u),f(v),g(v)].

13.8 The Equation of a Place Invariant

We have now gathered everything we need to formulate valid
equations: for a place invariantb = (b1, . . . , bk) of N with the
constantb0,

equation of a place invariant b1(p1) + . . .+ bk(pk) = b0

is theequation ofb. Figure 13.2 shows the equations of the
place invariants of the system netsN1, . . . , N6. Section 9.2
describes the validity of such equations inN . With this, we can
formulate the central theorem for place invariants of generic
system nets:

Theorem 15(Generic Place Invariant Theorem). Let N be a
system net and letb be a place invariant ofN . Then the equa-
tion of b holds inN .

The (quite extensive) proof is left to the reader. With this
theorem, the derived equations shown in Fig. 13.2 thus hold in
the system netsN1, . . . , N6.

The question remains of how to calculate place invariants.
This is already quite challenging for elementary system nets,
because integer solutions are required there. Otherwise, the in-
variants would not have any intuitive meaning. At least it is
possible to divide and apply the usual Gauss elimination there.
However, generic system nets do not know division. In prac-
tice, system properties and place invariants are not aimlessly
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calculated, but are specifically required or assumed. Such an
assumption is easily tested by inserting the respective values.
Occasionally, an assumed place invariant is “almost” correct
and can be adjusted by systematic trial and error.

13.9 Properties of the Philosophers Sys-
tem

Figure 13.3 shows the matrix and three place invariants of the
philosophers system in Fig. 9.1. The equations of these invari-
ants are

thinking + dining = [p1, . . . , p5], (5)

available + l(dining) + r(dining) = [g1, . . . , g5], (6)

l(thinking) + r(thinking)− available = [g1, . . . , g5]. (7)

g1...g5

p1...p5
x x

x x

(x)

(x)

(x)

(x)

dining

available

thinking

u t
r r

l l
e

According to Theorem 15, they hold in the philosophers
system. Intuitively, (5) means for each reachable state of a
philosopherpi: eitherpi is thinking orpi is dining. Equation
(6) asserts for each chopstickgi: it is either available or is the
left chopstick of a dining philosopher or the right chopstick
of a dining philosopher. The intuitive meaning of (7) is better
understood when represented as

available + [g1, . . . , g5] = l(thinking) + r(thinking), (8)

N t u M0

thinking −x x [p1, . . . , p5]
available −(l(x) + r(x)) l(x) + r(x) [g1, . . . , g5]
dining x −x

i1 i2 i3
thinking t l(t) + r(t)
available a -a
dining d l(d) + r(d)

Figure 13.3: MatrixN , initial markingM0 and three place invariants of the
philosophers system
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where for each chopstickgi we distinguish two cases:

1. gi is notavailable. Thengi occurs exactly once on the left
side of (8). This means that, according to the right side
of (8), there exists exactly onethinking philosopher, whose
left or right chopstick isgi. Thus, the other user of the
chopstick isdining.

2. gi is available. Then gi occurs twice on the left side of
(8). This means that there exist two thinking philosophers
p andq such thatgi is the left chopstick ofp and the right
chopstick ofq.

13.10 Properties of the Kindergarten Game

To understand the model of the kindergarten game in Fig. 4.13,
we derive a valid equation from one of its invariants.

t1 t2 t3 b M0

children −[•] [•]− [◦, ◦] −[•] f(x) B · [•] +W · [◦]

with f(•) = 0, f(◦) = 1 and1 + 1 = 0

Figure 13.4: Matrix, place invariant and initial marking ofthe kindergarten
game

...

...

childrent1

t2

t3

Figure 13.4 shows its matrix, an invariantb and its initial
markingM0. Together with the modulo-2 equation1 + 1 = 0
in Fig. 13.4, the functionf in b maps each multiset of children
to either 0 or 1 (cf. Sect. 9.6). First we show thatb is indeed a
modulo invariant (cf. Sect. 11.3). For the product ofb = (b1)
and the second column(N(1, 2)), the following holds:

b1 ·N(1, 2) = f(x) · ([•]− [◦, ◦])

= f(x) · [•]− f(x) · [◦, ◦]

= f([•])− f([◦, ◦])

= f([•])− (f([◦] + f([◦]))

= 0− (1 + 1) = 0− 0 = 0
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For the first and third column, the following holds:

f(x) · (−[•]) = f(−[•]) = −f([•]) = −0 = 0.

The initial markingM0 consists of two numbersB andW
of children dressed in black and white, respectively:
M0(children) = B·[•]+W ·[◦]. With this marking, the constant
of the invariantb has the value

f(M0(children)) = f(B · [•] +W · [◦])

= f(B · [•]) + f(W · [◦])

= B · f([•]) +W · f([◦])

= B · 0 +W · 1

= 0 +W = W

=

{
0, if W is even
1, if W is odd.

Thus, the equation ofb is

f(children) =

{
0, if W is even
1, if W is odd.

Because the equation holds inN , in particular, it holds in the
final markingMfinal with only one tokenm in children:
Mfinal (children) = [m]. Thus:

m = • ⇔ f(m) = 0

⇔ W is even,

m = ◦ ⇔ f(m) = 1

⇔ W is odd.

It follows directly: the dress color of the last remaining child
depends neither on the order in which the children form pairs
and leave the play area, nor on the number of children initially
dressed in black. It depends solely on whether the number of
children initially dressed in white is odd or even.
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Exercises

1. Construct the matrix of the system net in Fig. 13.1. Find twoplace invariants and derive
their respective equations.

2. Construct the matrix of the system net in Fig. 13.5. Find twoplace invariants and derive
their respective equations. Letf(f(x)) = x in this system net.

B

u

C

v

A

D

Eb

a

f(x)x
x

y

f(x)

g(y)

Figure 13.5: System net withf(f(x)) = x

* 3. Prove Theorem 15.

Further Reading

A calculus for place invariants of generic system nets was proposed in the first publication on
nets with individual tokens [28], but with a commutative product. Jensen [37] has developed a
semantic calculus with multisets and functions on multisets. Numerous works on the clarifica-
tion of the respective interrelations followed.

The representations and calculations of place invariants of generic system nets are as diverse
as the representations of the respective system nets. For instance, a colored net is, according to
[37] and [38], a “folded” elementary system net. Likewise, matrices and place invariants are
“folded” versions of elementary system nets. Girault and Valk [29] emphasize the functions on
arcs, while [64] emphasizes the role of symbols.

Schmidt [72] shows how to calculate traps and cotraps of system nets. There exist compara-
tively few publications on this topic.
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Typed and Untyped Formalisms

Most programming languages use explicit data types, typically real, int, char, bool, as well as
types likerecordsor arrayscomposed from them. Each variable of a program is assigned such
a type. An attempt to assign to a variable a value that falls outside the variable’s type results
in an error message. Thistypingallows a compiler to generate efficient code and to recognize
some inconsistencies in the program during compile time.

Similarly to the variables of a program, the places of a system net can be typed: a placep
can only hold tokens of specific type (as, for instance, the placeavailable in Fig. 9.1, which can
only hold chopsticks) orp may have an upper bound for the number of tokens it can hold (cf.
Chapter 6). Many variants of Petri nets type their places by extending the rule for the occurrence
of transitions: the generated tokens have to fulfill the respective conditions. Jensen’s colored
nets [38] are a prominent example.

We use an untyped version in this book. It is technically simpler, but is as expressive as
a typed calculus. However, a system net is intuitively easier to understand if each place has a
specified token type. We suggest to notdemandand construct such properties, but toverify them
instead. Place invariants are especially suited for this. This suggestion conforms to the approach
of numerous other modeling techniques in which properties (e.g., typing) are not demanded, but
are verified. Lamport, for instance, uses this approach to motivate the absence of types in TLA
[42].
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Dijkstra’s Pebble Game

ThePebble Gameoriginated in the circle around Edsger W. Dijkstra [20] (David Gries names
K. Scholten as the author). It is a variant of the kindergarten game described in Section 4.6 that
uses black and white pebbles in a pot as well as a game master instead of autonomous children
in a play area. The system is modeled nondeterministically and is an example of a program
whose complex termination behavior (the last pebble is black if and only if the initial number
of white pebbles is even) is easily understood by means of program invariants. The program is
very popular in introductory texts (for instance, in [31]).

This example clearly shows the general connection between programs and Petri nets: a pro-
gram is executed by an operating system (here: the game master). The operating system initiates
the execution of an instruction. In the case of nondeterminism, it chooses one of several alter-
natives. Petri nets do not assume such an executing entity. An enabled transition occurs without
any external influence. Therefore, the kindergarten game inSection 4.6 does not have a game
master. If the play area is “very large” or if “very many” children are playing, nobody can
keep track of, much less control, the game. The concept of thedistributed run is therefore very
appropriate here. Further aspects of this example are discussed in [67].
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The marking graphG of a system netN has already been in-
troduced in Section 2.8. Its nodes are the reachable states,its
edges the reachable steps ofN . We will specify a series of
properties ofN that are mirrored inG.

However,G is generally infinitely large. We therefore con-
struct the finitecovering graphH, which approximatesG. A
series of necessary or sufficient conditions for some properties
of N can be specified by means ofH.

14.1 Deriving Properties from the Mark-
ing Graph

Finite marking graphs may very well exceed exponential growth
with respect to the size ofN . Therefore, they are generally un-
suited for manual analysis of properties ofN . Nevertheless, a
few properties of a system net can be identified by means of its
marking graph.

We define six such properties of system netsN and imme-
diately characterize them as properties of the marking graphG
of N :

• N terminates, i.e., each run ofN is finite: G is finite and
does not contain any loops.

• N is deadlock-free, i.e., each reachable marking enables at
least one transition: each node ofG is the start of at least
one edge.

• N is live, i.e., for each reachable markingM and each tran-
sition t there exists a markingM ′ that is reachable fromM
and enablest: for each transitiont there starts a path at
each node ofG such thatt occurs in its edge labeling.
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• N is weakly live, i.e., for each transitiont there exists a
reachable marking that enablest: at least one edge ofG is
labeled witht.

• N is bounded, i.e., there exists a numberb such that each
place contains at mostb tokens in any reachable marking:
G is finite.

• N is reversible, i.e., from each reachable marking, the ini-
tial marking can be reached:G is strongly connected.

With this, a series of properties of system nets are reduced
to graph theoretical problems. As an example, Fig. 14.1 shows
an elementary system net with two unbounded placesB and
C. Figure 14.2 shows an initial segment of its marking graph.
With the above characterizations of properties,N is deadlock-
free, not live, weakly live, unbounded and not reversible.

d

C

c

Ba

b

A

Figure 14.1: System net with unbounded places

14.2 The Idea of the Covering Graph

An elementary system netN with at least one unbounded place
has an infinite marking graph. We therefore construct a finite
covering graphH that approximates the marking graph: regu-
lar, infinite substructures of the marking graph are condensed
into finite subgraphs by means ofω-markings. The procedure
is ambiguous:N may have several distinct covering graphs.
However, they all fulfill the required purpose.
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100

001

a

b

d

c

020

d

c

c c

d

c

d

c

d d

d

010 011 012

021 022

013

030 031

040

...

...

...

...

...

Figure 14.2: Initial segment of the marking graph of Fig. 14.1 (each mark-
ingM is written asM (A) M (B) M (C))

Technically,H uses markingsM with entries of the form
M(p) = ω. Intuitively, such anω-marking indicates that the
placep is unbounded: for each boundn there exists a reachable
markingM such thatM(p) > n.

Four questions can be answered with the help of the cover-
ing graph:

• Is the number of reachable markings finite or infinite?

• Which places may accumulate unboundedly many tokens?

• Which sets of places may simultaneously accumulate un-
boundedly many tokens?

• For a given transitiont, does a reachable markingM exist
that enablest?

14.3 ω-Markings

ω-markingsM generalize the usual markings by indicating the
unboundedness of a placep with M(p) = ω. An ω-marking
M of an elementary system netN with a place setP is thus a
mapping

M : P → N ∪ {ω}.
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To handleω-markings, we supplement the usual arithmetic
rules with

ω + 1 = ω − 1 = ω.

With the definitions in Section 3.1, stepsM
t

−→ M ′ in partic-
ular are well-defined forω-markingsM andM ′.

We extend the order< of natural numbersn by

n < ω

and call anω-markingM less than or equal toM ′, written as

M ≤ M ′

if M(p) ≤ M ′(p) for each placep of N .
With the marking notationM(A)M(B)M(C) shown in

Fig. 14.2,

0ω1
d

−→ 0ω0
c

−→ 0ω1

describes two (unreachable) steps of the system net in Fig. 14.1.

14.4 The Construction of the Covering
Graph

covering graph
A covering graphH of a system netN is constructed step by
step. Each step generates an edge to an existing or to a new
node. Initially,H does not have any edges and only one node,
the initial markingM0 of N .

Now let the graph be partially constructed:

(a) initial segment ofH for
Fig. 14.1:

100

010a
c

01

(b) step
c

01 01

(c)

100

010a
c

c

01

a) Let theω-markingM already be a node ofH.

b) LetN have a step of the formM
t

−→ M ′.

c) Let there be not-labeled edge inH that starts inM .

Then theω-markingM ′′ is defined for each placep of N as:

M ′′(p) =def





ω, if there exists a path fromM0 toM
that contains a nodeL such that
L ≤ M andL(p) < M(p)

M ′(p), otherwise
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The edgeM
t

−→ M ′′ is now added to the graph. IfM ′′ is
not already a node, it is added as a new one. The algorithm ter-
minates if for each nodeM and each transitiont that is enabled
in M , there exists at-labeled edge that starts inM .

During the construction ofH there generally exist several
nodes with several enabled transitions that have not been pro-
cessed yet. Depending on the order in which these transi-
tions are processed, different covering graphs may be gener-
ated. Figure 14.3 shows two distinct covering graphs of the
system net shown in Fig. 14.1.

100

010

001

a
1

7
d

8

b

c

c

2

3
d

c

4

5

6

d

01 0

100

010

001

a
6

1
d

2

b

c

c

3

4

5

d

0

Figure 14.3: Two covering graphs of the elementary system net in Fig. 14.1.
As in Fig. 14.2, markingsM are written asM(A)M(B)M(C). The indices
on the edges indicate the order of their construction

If a system net is bounded and has a finite number of reach-
able markings, its covering graph does not contain any “real”
ω-markings. The result of the construction is its marking graph
as introduced in Section 2.8.

14.5 The Finiteness of the Covering Graph

A covering graph is only useful if its construction terminates.
This is always the case:

Theorem 16(Theorem on the Finiteness of Covering Graphs).
A covering graph of an elementary system netN is always
finite.
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The theorem’s proof is essentially based on the following
property: to each sequenceM0M1 . . . of mutually distinct mark-
ingsMi of N there exists an increasing sequencen0 < n1 <
. . . of indices such that

Mn0
< Mn1

< . . . , (1)

whereM < M ′ for two markingsM andM ′ if and only if
M(p) ≤ M ′(p) for each placep of N andM(q) < M ′(q)
for at least one placeq of N . The proof is left as an exercise.
Intuitively, (1) is based on the fact that there do not exist any
infinitely decreasing sequencesk1 > k2 > . . . of natural num-
bers.

For an indirect proof of the theorem, we now assume that
an infinite covering graphH of N would indeed exist. Ac-
cording to the construction of covering graphs in the previous
section, each node is reachable fromM0 and only has a finite
number of successors. Therefore, becauseH is infinite, during
its construction, an infinite path

M0
t1−→ M1

t2−→ · · ·

of mutually distinct nodes (according to “König’s Lemma”) is
generated. According to (1), the (infinite) sequenceM0M1 . . .
contains an infinitely increasing subsequenceMn0 < Mn1 <
. . .. According to the construction of covering graphs, the
number of placesp with Mni(p) = ω increases with eachni.
This would require infinitely many places. However,N only
has a finite number of places. The proof follows by contradic-
tion.

14.6 The Covering of Sequential Runs

Let N be an elementary system net. Anω-markingM of N
coversa markingM if for each placep of N :

M(p) = M(p) or M(p) = ω.

This leads to:
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Theorem 17(Covering Theorem). LetH be a covering graph

of an elementary system netN . For each sequential runM0
t1−→

M1
t2−→ · · · of N there exists inH a pathM0

t1−→ M1
t2−→

M2 · · · in which eachMi covers the markingMi (i = 1, 2, . . .).

counterexample:

100 a
−→ 010 c

−→ 01ω d
−→

0ωω d
−→ 0ωω · · ·

is a path in both covering graphs

of Fig. 14.3, but not a step

sequence in Fig. 14.1

The proof follows from the construction ofH via induction
overi. The converse is generally not true.

In general, different system nets may have the same cover-
ing graph. The construction of such an example is left as an
exercise.

14.7 Simultaneously Unbounded Places

A

B

C

D

E

D andE are unbounded,

but not simultaneously

It is easy to construct trivial covering graphs covering each
and every sequential run of an elementary system net: each
place contains anω-entry. A sensible covering graph only con-
tainsω-entries for the unbounded places. Furthermore, several
ω-entries in a single node indicate simultaneously unbounded
places: a setQ of places ofN is simultaneously unboundedif
for each numberi ∈ N there exists a reachable markingM i of
N such that for eachq ∈ Q:

M i(q) ≥ i.

In fact, the construction procedure in Section 14.4 only gener-
ates “sensible” covering graphs. For a nodeM of a covering
graph and a placep of N , let

p ∈ ωM iff M(p) = ω.

Then:

Theorem 18(Simultaneous Unboundedness Theorem). LetH
be a covering graph of an elementary system net. Then, for
each nodeM ofH, the setωM is simultaneously unbounded.

For a proof, letM be a node ofH and leti ∈ N. We need
to show: there exists a reachable markingM i of N such that
M i(q) ≥ i for eachq ∈ ωM .
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The proof is accomplished by induction over the cardinality
of ωM : if ωM is empty, the proposition is trivial. Otherwise,
the following obviously holds for each edgeM1

t
−→ M2 of

H: ωM1
⊆ ωM2

. Furthermore, because the initial marking of
N does not mark any place withω, there exists a path inH of
the formM ′ t1−→ . . .

tn−→ M with ωM ′ = ωM andωM ′′ $ ωM ′

for each stepM ′′ t
−→ M ′.

Then there exists a path inH of the formL
u1−→ . . .

um−→ M ′

with L ≤ M ′ andωL $ ωM ′ . For the construction ofM i,
we assume according to the induction hypothesis a reachable
markingLi with Li(p) = i + (i + n) · m + n if p ∈ ωL, or
Li(p) = L(p) otherwise. Now, starting fromLi let the transi-
tion sequenceu1, . . . , um occuri + n times in total, followed
by ti, . . . tn. Each stepui reduces the number of tokens of
each place inωL by at most one. Each sequenceu1, . . . , um

increases the number of tokens of each place inωM i andωL by
at least one. Each stepti reduces the number of tokens of each
place inωM ′ by at most one. Therefore, the resulting marking
has the property required ofM ′.

14.8 Dead Transitions

A transitiont is deadif no reachable marking enablest. The
following theorem is easily proven:

Theorem 19(Theorem on Dead Transitions). LetH be a cov-
ering graph of an elementary system netN . A transitiont is
dead inN if and only ifH does not have at-labeled edge.

14.9 Covering Graphs of Generic Sys-
tem Nets

The procedure in Section 14.4 can also be applied to construct
the covering graph of a generic system net. The order on mul-
tisets has already been introduced in Section 2.3. Everything
else is analogous. In particular, the properties describedin Sec-
tions 14.5 through 14.8 also apply to generic system nets.
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Exercises

1. Construct two different elementary system nets that have the same covering graph.

2. In the proof of Theorem 16, the following subtask remains:
LetP be a finite set and letM0M1 . . . be a sequence of mappingsMi : P → N(i = 0, 1, . . .).
Show that there exists a strictly increasing sequencen0 < n1 < ... of indices such that
Mn0

≤ Mn1
≤ ... .

Hint: We recommend induction over the cardinality ofP . For |P | = 1 and for the induction
step, we recommend the inductive construction of the indicesn0, n1, ... .

3. Construct elementary system netsN with the following properties:

(a) N is deadlock-free and not live.

(b) N is unbounded and reversible.

* (c) N is live, bounded and not reversible.

* (d) N is live (i.e., in particular deadlock-free) and reversibleand for the initial marking
M0, the following holds:
If in M0 an additional token is placed on any of the places ofN , the net with this
new initial marking is no longer deadlock-free.

4. Show for any given elementary system netN :

(a) If N is deadlock-free, it does not terminate.

(b) If N is live, it is deadlock-free.

(c) N is live if and only if for each reachable marking ofN , when treated as the initial
marking, there do not exist any dead transitions.

(d) N is bounded if and only if the number of reachable markings ofN is finite.

(e) If N is bounded, the construction of the covering graph yields the marking graph of
N .

Further Reading

As early as 1969, Karp and Miller [39] proposed the idea of thecovering graph. Since then,
various versions have been circulating. They differ in understandability, size, speed of termina-
tion and practicality for particular classes of nets. Finkel [25] shows how to construct minimal
covering graphs.

On the basis of classic model-checking procedures, Schmidt[73] extracts many of the tem-
poral logic formulas valid in a simple system net from its respective covering graph.





Reachability in Elementary
System Nets

Chapter 15

Determining the reachability of an arbitrary marking is oneof
the interesting, but also one of the most difficult problems of
elementary system nets. How to decide whether a markingM
of an elementary system netN is reachable (from the initial
markingM0)? If only a finite number of markings is reach-
able, it is possible to construct each of them and test whether
M is among them. IfM is reachable, it is also possible to
incrementally construct the (possibly infinite) marking graph
until M is eventually encountered.

However, if an infinite number of markings is reachable in
N , andM is not one of them, then this procedure fails. Never-
theless, the problem can be solved: it is possible to construct a
finite setK of reachable markings ofN such thatM is reach-
able if and only ifM is an element ofK. However, this set is
incredibly large and it was a long time before the reachability
problem was solved.

In this chapter, we will discuss a necessary condition for the
reachability and thus a sufficient condition for the unreachabil-
ity of a marking. At the same time, we will formulate criteria
for deciding whether a finite or an infinite number of markings
are reachable.

To do this, we will add themarking equationandtransition
invariants to our set of linear-algebraic tools. The covering
graph, too, yields criteria for the reachability of markings and
for the finiteness of the set of reachable markings.

15.1 Corollaries of Place Invariants

Some information on the reachable and unreachable markings
of an elementary system netN can be derived from its place
invariants. A direct corollary of the Elementary Place Invari-
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ants Theorem in Section 11.3 for each markingM of N is: if
N has a place invarianti such that

i ·M 6= i ·M0,

thenM is unreachable. The converse is not generally true:
i ·M = i ·M0 does not guarantee thatM is reachable.

A direct corollary of thePositivePlace Invariants Theorem
in Section 11.4:

A B C

D

c

a b

d

D is not part of any place invariant.

Nevertheless, only a finite number

of markings is reachable.

Theorem 20(Finiteness Theorem of Positive Place Invariants).
If each place of an elementary system netN has a positive
place invariant, then only a finite number of markings is reach-
able inN .

The converse of this theorem is not generally true.

15.2 The Marking Equation

Using the vector representation from Section 11.1, for a se-

quenceM0
t

−→ M1
t′

−→ M2 of two steps, the following holds:
M2 = M0 + t+ t′. Consequently, for the sequence

M0
t1−→ M1

t2−→ M2
t1−→ M3

the following holds:

M3 = M0 + 2t1 + t2. (1)

This exploits the fact thatM3 does not depend on the order in
which the transitions occur, only on their frequency.

For an elementary system netN with l transitions, letv =
(0, . . . , 0, 1, 0, . . . , 0) be anl-dimensional vector with “1” at
the ith position. Then the productN · v filters theith column
out ofN . Thus, for the stepM

ti−→ M ′ the following holds:

M ′ = M +N · v.

Thus, (1) can be written as

M3 = M0 +N · (2, 1, 0, . . . , 0).
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In general, for each step sequenceσ from a markingM to a
markingM ′, the following holds: ifti occurs exactlyai times
in σ (i = 1, . . . , l), then the vectora = (a1, . . . , al) solves the
system of equations

A

a

B

C

D

b

σ: AB a
−→ BC b

−→ AD a
−→ CD

counting vector:(2, 1)

M ′ = M +N · x. (2)

The vectora is called thecounting vectorof σ. Reasonably, we
only consider vectorsa = (a1, . . . , al) with natural numbersai
solutionsof (2). The system of equations (2) is usually written
as

marking equationN · x = M ′ −M (3)

and is called themarking equation forM andM ′. A direct
consequence of its construction is:

Theorem 21 (Theorem on the Marking Equation). Let N be
an elementary system net with a step sequenceσ from a mark-
ing M to a markingM ′. The counting vector ofσ solves the
marking equation forM andM ′.

N:

A

a

B

C

b

D

LetM =def A andM ′ =def D.

a = (1, 1) solvesN · x = M ′ −M .

No step sequenceM → . . . → M ′

hasa as its counting vector.

With L = C, the following holds:

M + L
a
−→ B b

−→ M ′ + L.

The converse is not generally true: not each solutiona to the
marking equation (3) is a counting vector of a step sequence
from M to M ′. However, if it is possible to – figuratively
speaking – “borrow” tokens, then each solution to the mark-
ing equation is a counting vector of a step sequence:

Theorem 22(Viability Theorem). LetN be an elementary sys-
tem net with markingsM andM ′ and a solutiona to the mark-
ing equation (3). Then there exists a markingL ofN and a step
sequenceσ fromM + L toM ′ + L such thata is the counting
vector ofσ.

For a proof, one can choose a sufficiently largeL such that
all transitions inσ can occur independently from one another.

The “borrowing” of tokens is only necessary if the netN
contains a cycle, that is, if a chain of arcs closes a circle. Oth-
erwise,N is acyclic. Each solution to (3) is then the counting
vector of a step sequence fromM to M ′:

Theorem 23(Acyclic Viability Theorem). LetN be an acyclic
elementary system net with markingsM andM ′, and leta be
a solution to the marking equation forM andM ′. Thena is
the counting vector of a step sequence fromM to M ′.
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The theorem can be proved by induction over the sum of the
components ofa. The transitions “leading” inN are marked
in M .

From the Theorem on the Marking Equation, there immedi-
ately follows: if there does not exist a solution to (3), thenM ′

is unreachable fromM .

15.3 Transition Invariants

Of interest is the special caseM = M ′ in the marking equation
(3). Then the equation is reduced to

N · x =
−→
0 , (4)

where the length of the vector
−→
0 = (0, . . . , 0) is equal to the

transition invariant

number of places ofN . Analogously to (3) in Section 11.3,
a solutionm = (m1, . . . ,mk) to (4) with natural numbers
m1, . . . ,mk is a transition invariantof N . A direct corollary
of (3) in Section 15.2 is:

Theorem 24(Transition Invariants Theorem). Leta be a tran-
sition invariant of an elementary system netN , and letσ be a
step sequence from a markingM to a markingM ′ such thata
is the counting vector ofσ. ThenM andM ′ are identical.

N:

A

B

C

N has no transition invariant

The converse also holds and yields:

Theorem 25(Reproducibility Theorem). If an elementary sys-
tem netN does not have any transition invariants, then no
marking is again reachable from itself.

Transition invariants are of interest in various contexts.If
N is bounded (if covered by a positive place invariant, for in-
stance) and a transitiont does not occur in any transition in-
variant with an entry> 0, thent occurs only a finite number of
times.

The frequencies of the transitions of a scenario (cf. Sect. 5.1)
form a transition invariant. Likewise, transition invariants with
small entries are candidates for the construction of scenarios.
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Exercises

1. Disprove the converse of Theorem 21: Construct an elementary system netN with an un-
reachable markingM ′, whose marking equationN · x = M ′ − M0 has a solution with
natural-number entries.

2. Calculate three viable transition invariants of the crosstalk algorithm in Fig. 3.9.
Hint: Consider the connection between transition invariants and scenarios.

3. Prove the Acyclic Viability Theorem (Theorem 23).

Further Reading

The question regarding the reachability of a markingM from a markingM0 has been around
since the 1960s. Karp and Miller [39] posed it as a purely mathematical problem concerning the
existence of a sequence of arbitrarily many instances from agiven finite set of integral vectors,
whose partial sums do not have any negative components. Thisproblem is much more difficult
than it may seem, and it was not until 1980 that Mayr solved it [47], [48]. Since then, numerous
versions of its proof have been presented.

Reutenauer [71] puts the reachability problem in the contextof other mathematical questions.
The proof of Priese and Wimmel [61] is comparatively easy to read.

The memory requirements of each algorithm for the problem grow exponentially with the
size of the net (for the specialist: it is EXPTIME hard). Thismakes it clear that there exists
no general, practicable procedure for deciding the reachability. Therefore, other techniques for
deriving necessary and sufficient criteria for the reachability are employed, based in particular
on traps, cotraps, place invariants, covering graphs, marking equations and transition invariants.

Transition invariants were introduced by Lautenbach [43].





Run Properties Chapter 16

The question raised in the previous chapter, whether or not it is
possibleto reach a markingM of a system net, is now strength-
ened to considering whether or notM is definitelyreached.

16.1 Intuitive Question

This is an entirely new problem, because each question cov-
ered thus far (in Chaps. 9–15) only relates to properties of in-
dividual, reachable markings or (like reversibility and liveness)
to individual paths in the marking or covering graph. However,
the question of whether a marking is definitely reached relates
to each and every run of the corresponding system net.

The crosstalk algorithmN in Fig. 3.7 contains a typical ex-
ample: the return of a waiting process to its idle state. In each
sequential runw = M0

t1−→ M1
t2−→ . . . of N , each mark-

ing Mi with Mi(waitingl) = 1 is followed by a markingMi+k,
k ≥ 0, with Mi+k(idlel) = 1. This is not directly obvious and
the question arises how to prove it.

p

x

x+1

59

0 ut

x   59 58¹

...

...

childrent1

t2

t3

In general, questions relating to properties with similar struc-
tures arise in many systems: the bell of the bell clock (Fig. 4.9)
tolls every hour on the hour. In the kindergarten game (Fig. 4.13),
only one child will eventually remain in the play area. In the
system of the dining philosophers (Fig. 9.1), each chopstick
will always become available again.

Some properties are composed of elementary properties.
For instance, for each inserted coin, the cookie vending ma-
chine either gives out a cookie packet or returns the coin. When
the light of the light/fan system (Fig. 7.2) is switched on, either
the fan starts at some point or the light is switched off again.

Occasionally, it is of interest that a certain property isnot
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valid: the mutual exclusion system (Fig. 3.2) does not guaran-
tee that each waiting process will eventually become critical.
The crosstalk algorithm (Fig. 3.7) does not require a process to
leave its idle state. All these properties arerun propertiesof a
system net.

16.2 Defining Run Properties

In order to comprehend run properties, we fall back on state
properties (Chap. 9) of the formp ≥ 1 for placesp. As ex-
plained in Sect. 9.7, we write for a markingM

M |= p, (1)

(“p is valid inM ”) if M(p) ≥ 1. For instance,locall is valid
in the initial markingM0 of the mutual exclusion system in
Fig. 3.2. The logical combination

localr ∧ key.

is also valid inM0.

critical

waiting

local

critical

waiting

local

key

a

b

c

e

d

f

e el

l

l

r

r

r

run property
Technically, arun property is constructed from two state

propertiese andf of N and written as

e 7→ f (2)

(“e leads tof ”). The validity of e 7→ f does not relate to
an individual marking, but to a sequential runσ = M0

t1−→

M1
t2−→ · · · of N . Property (2)is valid inσ if for each indexi

the following holds:

if Mi |= e, thenMj |= f (3)

for a j ≥ i. Property (3) is valid in a system netN if and only
if (3) is valid in eachcomplete sequential run ofN . We write:

run property valid inN

N |= e 7→ f. (4)A B C

A 7→ B andA 7→ C As a technical example,A 7→ E is valid in the elementary
system net in Fig. 16.1. This property is valid, because each
reachable markingM with M |= A also marksC or D.
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A

C

B

Db

c

a

E

Figure 16.1: Elementary system netN with N |= A 7→ E

A typical example is the run property

waitingl 7→ idlel

for the crosstalk algorithm. It describes the already-mentioned
return of the left process to its idle state (cf. Sect. 16.1).The
run property of the light/fan system, also mentioned in Sect. 16.1,
thus becomes

light on 7→ (fan running ∨ light off).
light on

switch
light on

light off

switch
light off

fan stops

fan starts

fan
off

fan
running

e e

One often wants to express that fromeachmarkingM a
markingM ′ with a propertyf is reached. For instance, from
each reachable marking of the crosstalk algorithm, a marking
that marksidlel is reached. To express this as a property of
the form (2), a state propertye is needed that is valid in each
reachable marking. In the world of logic we obviously choose
e = true. Thus, for the crosstalk algorithm, the following is
valid:

true 7→ idlel.

Thus far, we have covered run properties of elementary sys-
tem nets. Run properties of generic system nets are formulated
entirely analogously. The only difference is that individual to-
kensu in a placep are described as propositional atoms, analo-
gously to (1). As explained in Section 9.7, we writep.u. With
this notation, for instance, the return of the left and rightchop-
stick of each dining philosopher in the system net in Fig. 9.1is
described as
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dining.a 7→ (available.l(a) ∧ available.r(a)).

For each inserted coin, the cookie vending machine in
Fig. 1.10 either gives out a cookie packet or returns the coin.
To formulate this, we have to add a return slot to the model,
as shown in Fig. 16.2. Then (using the notations from Sec-
tion 9.7) the following holds:

coin slot. �1 7→ compartment. ∨ return slot. �1

x x-1

counter 5

signal
compart-

mentb

storage

cash box

no signal

take
packet

e

coin slot

insertion
possible

e

return
coin

insert
coin

�1

�1

�1

x   0>
�1

a

�1

return slot

�1

Figure 16.2: Addition of a return slot

For the bell clock in Fig. 4.10 and for the kindergarten game
in Fig. 4.13, the respective propertiestrue 7→ on andtrue 7→
|children| = 1 are obviously valid.

16.3 The Deduction Rule

Section 16.2 defined the validity of a run property in a system
netN over the set of all complete sequential runs ofN . The
netN may very well have infinitely many such runs and each
may be infinitely long. To show that a run propertye 7→ f is
valid in a system net, it is obviously impossible to assert for
each individual run thate 7→ f is valid in it. However, it is
possible to deduce simple, valid run properties directly from
the static structure of a system net and then use them to derive
more complex properties.
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(1) (2)

A Bt

A 7→ B

A B

t

C D

AC 7→ BD

(3) (4)

t

u

B

C

A

A 7→ B ∨ C

A Bt

C Du

A 7→ B ∨ D

(5)
A Bt

C Du

E

AC 7→ BC ∨ D
AC 7→ BC ∨ AD

AC 7→ BC if A → ¬ E

Figure 16.3: Substructures of a netN and run properties valid inN

Figure 16.3 shows five examples of small subnets. They are
to be seen as being embedded into a larger netN , indicated by
the dashed arcs. Each subnet’s corresponding property is then
valid inN (for the notation, cf. Eq. (25) in Sect. 9.7).

Consider, for instance, the case of the subnet (1) occurring
in N : letw be a complete run ofN , and letM be a marking of
w with a token inA. SinceM enables the transitiont and there
are no other transitions inA•, the transitiont will eventually
occur inw. In doing so, a markingM ′ with a token inB is
reached. Therefore,A 7→ B is valid inN .

The case of the subnet (4) occurring inN is completely
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analogous: letM be a marking ofw with a token inA. The
marking M thus enables the transitiont. Now, during the
course ofw, the placeC may also receive a token. In this case,
u may occur instead oft. Therefore, we may only conclude
that eitherB or D receives a token.

The example list of valid run properties in Fig. 16.3 is by
no means complete. The general case of elementary system
nets is described by adeduction rulefor run properties. For
an elementary system netN with the setP of places, this rule
generates valid properties of the form

Q 7→ (f1 ∨ . . . ∨ fn),

whereQ, f1. . . . , fn ⊆ P . With the shorthand of (25) from
Section 9.7, a set{p1, . . . , pk} of places describes the logical
expressionp1 ∧ . . . ∧ pk. To formulate the deduction rule, we
define theeffectthat a transitiont of N has on a setQ ⊆ P as
the set of tokens ofQ that remain after the occurrence oft or
are newly generated:

eff (Q, t) eff (Q, t) =def (Q\•t) ∪ t•.

Figure 16.4 shows examples of the effect of a transition on
different sets of places. IfQ ⊆ •t andR ∩ •t = ∅, then obvi-
ouslyeff (Q ∪R, t) = R ∪ t•.

A

t

B

D

C

...

eff (A, t) = eff (AB, t) = C
eff (D, t) = eff (AD, t) = eff (ABD, t) = CD

Figure 16.4: The effect oft on different sets of places

All this leads to the followingdeduction rulefor run prop-
erties of a system netN with a given setQ of places ofN :

1. Test applicability: doesN have a hot transitiont such that
•t ⊆ Q? If not, the rule is not applicable.



16.3. The Deduction Rule 173

2. Exclude transitions: chooseT = {t1, . . . , tn} ⊆ Q• such
that for eacht ∈ Q• the following holds: eithert ∈ T or
N |= Q → ¬•t.

3. Derive property: the propertyQ 7→ eff (Q, t1) ∨ . . . ∨
eff (Q, tn) is valid inN .

As an example, we proveAC 7→ BC for (5) in Fig. 16.3 under
the assumption thatA → ¬ E:

1. t is a hot transition with•t = A. Thus, the rule is applicable.

2. (AC)• = {t, u}. From the assumption thatA → ¬ E, it
follows thatA → ¬•u. Thus, we can excludeu and choose
T = { t }.

3. The proof follows, sinceeff ( AC,t ) = BC.

The following theorem asserts that each property derived via
this rule is actually valid inN :

Theorem 26(Theorem on Deduced Run Properties). LetN be
an elementary system net, and letQ be a subset of its places
such thatQ enables at least one hot transition ofN . LetT =
{t1, . . . , tn} ⊆ Q• such thatN |= Q → ¬•t for eacht ∈
Q•\T . Then

N |= Q 7→ eff (Q, t1) ∨ . . . ∨ eff (Q, tn).

With this theorem, the properties shown in Figs. 16.3 and
16.4 follow immediately. When testing the rule’s applicability,
it is important thatt is hot. If, in the examples in Fig. 16.3, the
transitiont was cold andu was hot, only (3) would be valid. A
property of the formC 7→ q cannot be derived for any of the
examples in Fig. 16.3, becauseC alone does not enable any
transition.
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16.4 Proof Graphs

Such simple run properties, deduced directly from the net struc-
ture, can be used inproof graphsto assert more complex prop-
erties. This technique exploits a series of characteristics of run
properties. The most important is transitivity:

If N |= e 7→ f andN |= f 7→ g,

then alsoN |= e 7→ g.
(5)

With this, it is possible to form chains

e0 7→ e1 7→ . . . en (6)

to prove thate0 7→ en.
Another important characteristic is the rather simple obser-

vation that “7→” is weaker than the logical implication:

If N |= e → f , thenN |= e 7→ f. (7)

As to the proof: (3) requiresj ≥ i; herej = i suffices.
Finally, the logical disjunction and “7→” can be combined:

If N |= e 7→ (f1 ∨ f2), N |= f1 7→ g andN |= f2 7→ g,

then alsoN |= e 7→ g.
(8)

Obviously, the propositional conjunction

N |= e 7→ (f1∧f2) implies thatN |= e 7→ f1 andN |= e 7→ f2,

and for the propositional disjunction,

N |= e 7→ f1 orN |= e 7→ f2 implies thatN |= e 7→ (f1∨f2).

The respective converse does not hold.
We now define aproof graphas a finite, acyclic graph with

state properties as nodes. A proof graph graphG for N |= p 7→
q hasp as its initial andq as its final node. For each noder with

r
1

rn

r
.
.
.



16.4. Proof Graphs 175

letN |= r 7→ (r1 ∨ . . . ∨ rn).
Figure 16.5 shows a proof graph forN |= A 7→ E with

N from Fig. 16.1. To aid an intuitive understanding, we write
“ 7→”-edges as “→” if “ 7→” represents the propositional impli-
cation according to (7). Edge labelings indicate the transitions
that occur.

B BD
b

BC
c

E
a

A

Figure 16.5: Proof graph forN |= A 7→ E

The examples in Fig. 16.3 suffice to show the correctness of
the steps of the proof graph in Fig. 16.5. The first stepA 7→a B
follows from (1) in Fig. 16.3. Next is the logical implication
B → (BC∨BD), which is valid inN due to the place invariant
A+B−C−D = 0. The stepBC 7→ BD follows with C → ¬D
from the place invariantC + D + E = 1. Finally, BD 7→ E is
obvious.

A

C

B

Db

c

a

E
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Exercises

1. Construct elementary system nets that disprove each of thefollowing propositions:

(a) If N |= p 7→ q andN |= r 7→ s, thenN |= p ∧ r 7→ q ∧ s.

(b) If N |= q ∧ r 7→ s, thenN |= q 7→ s orN |= r 7→ s.

2. Prove the following for the crosstalk algorithm in Fig. 3.9: if the left process leaves its initial
state,A, it returns there.

3. (a) The run propertyN |= AB 7→ C holds in the system net in Fig. 16.6. Show that this
cannot be proved by means of a proof graph.

A b

a

c
B D

C

Figure 16.6: System netN with N |= AB 7→ C

(b) Add a placeE to N in Fig. 16.6 that represents¬B, that is, the complement ofB.
Now prove for this new system netN ′ thatN ′ |= AB 7→ C.

4. Prove or disprove:

(a) If N |= e1 7→ f andN |= e2 7→ f , thenN |= (e1 ∨ e2) 7→ f .

(b) If N |= (e1 ∨ e2) 7→ f , thenN |= e1 7→ f andN |= e2 7→ f .

* 5. Prove the reading rule for run properties (Theorem 26).

Further Reading

The termrun property, as defined in Sect. 16.2, is central to specification techniques that are
based on temporal logic [55], [50] and is usually termed “leads to”. The reading rule and proof
graph are taken from [64]. A variant of run properties fordistributed runs is also proposed
there. Such properties are more liberal and the deduction rule is simpler than in Sect. 16.3.
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Temporal Logic and leads to

Since the end of the 1970s, temporal logic has been used successfully in computer science
to describe and prove important system properties [46]. In addition to the logical operations,
temporal logic uses themodaloperator “�” and interprets it in sequential runsσ as follows: if
a propertyϕ is valid inσ, then�ϕ is even valid in each suffix, that is, in each residual segment
of σ. As an abbreviation,♦ϕ stands for¬�¬ϕ.

With the “linear time” interpretation of temporal logic, a formulaϕ is valid in a systemN
(written: N |= ϕ) if and only if ϕ is valid in each run ofN . With this, we can use temporal
logic to express run properties (cf. (4) in Sect. 16.2):

N |= e 7→ f iff N |= �(e 7→ ♦f).

The validity of an equation or inequalityG in N (cf. Chap. 9) is expressed in the usual notation
of temporal logic asN |= �G.

As early as 1982, Owicki and Lamport [55] emphasized the importance of the “7→”-operator
(“leads to”). Not unlike us, Misra and Chandy use it as the soleoperator for run properties in
their UNITY formalism [50].

Occasionally, temporal logic is also used in connection with distributedruns. This leads to
the formulation of properties that cannot be expressed within the ambit of sequential runs [64].
However, distributed runs mainly serve as the basis forpartial order model checking. In this
process, the validity of a propertyq in a single, cleverly chosen sequential run or in a small set
of initial segments of distributed runs implies the validity of q in “large” sets of runs [49], [23].
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Traps and place invariants exploit the general structure ofPetri
nets. For nets with particular structural properties, likethefree-
choiceproperty, there are further analysis techniques.

17.1 Defining Free-Choice Nets

Essentially, two structural properties describe the dynamics of
a system net:

• Places with multiple succeeding transitions: such a place
can describe different alternatives and continue a certain
behavior.

• Transitions with multiple preceding places: such a transi-
tion can synchronize multiple behavioral strands.

These two structural properties may be closely intertwined
in a system net, for instance, if a place has multiple succeed-
ing transitions and (at least) one of them has another preceding
place. In this case, the local behavior may depend on the entire

t

psystem net: a token in a placep does not necessarily enable
each succeeding transitiont of p. Additional tokens may in-
dependently appear or disappear in other preceding places of
t. Likewise, it is not guaranteed that a synchronizing transition
actually occurs.

p

t

A free-choice net does not allow such structures: an ele-
mentary system netN is called afree-choice netif for each
placep of N with |p•| ≥ 2 and each transitiont ∈ p•:

•t = {p}. (1)
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There is also a completely different motivation for this type
of net: The synchronization of tokens is deterministic. The
tokens required for the occurrence of a transition accumulate
and do not get lost again. For each transitiont of N with |•t| ≥
2 and each placep ∈ •t, we now require that

free-choice net

p• = {t}. (2)

p

t

These two definitions, (1) and (2), actually describe the same
nets! A third, symmetrical definition also describes the same
nets: for each arcp → t of N , either

•t = {p} or p• = {t}. (3)p t

not both9-arcs
at the same time

17.2 The Trap/Cotrap Theorem for Free-
Choice Nets

Chapter 10 has shown that in each elementary system net with
the trap/cotrap property, each reachable marking enables at
least one transition. For free-choice nets with the trap/cotrap
property, an even more powerful theorem holds: each transi-
tion can always become enabled again (the net is live, as de-
fined in Chap. 10).

A

B

C

not live for any initial marking:

the cotrap{A,C} does not

contain any trap

Theorem 27(Trap/Cotrap Theorem for Free-Choice Nets). Let
N be a free-choice net. ThenN is live if and only ifN has the
trap/cotrap property.

The proof is not easy. From this theorem, there immedi-
ately follows: if further tokens are added to the initial marking
of a live free-choice net, the result is again a live net. This
does not hold for common elementary system nets. A series
of properties of free-choice nets can be decided comparatively
efficiently.

17.3 Clusters

A cluster is a particularly simple subnet. It turns out that free-
choice nets consist of such clusters.
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A cluster of a netN is a subset of its places and transitions.
There exist two different types:

1. For a placep with p• = {t1, . . . , tn} (n ≥ 0), let the input
elements•ti of each transitionti (i = 1, . . . , n) contain
only p.1 Then{p, t1, . . . , tn} is free-choice clusterof N : a
token inp has a “free choice” between the transitionsti.

t
1

p

. 
. 
.

t
n

fc-cluster

p
1

. 
. 
.

t

p
m

ds-cluster

2. For a transitiont with •t = {p1, . . . , pm} (m ≥ 0) let the
post-setp•j of each placepj (j = 1, . . . ,m) contain only
t. Then{t, p1, . . . , pm} is a deterministic synchronization
clusterof N . The transitiont occurs after it has “waited”
for the placesp1, . . . , pm to become marked.

The particularly simple structure{p, t} with p• = {t} and•t =
{p} is obviously a cluster of both types.

p tIn Fig. 17.1, the structures{B, a, b} and{C, c, d} are free-
choice clusters.{e,D,E} is a deterministic synchronization
cluster, and{A, f} is a cluster of both types.

E

D

A

C

B
a

b

c

d

ef

Figure 17.1: A free-choice net with four clusters

The clusters of a free-choice netN partitionN :

Theorem 28(Cluster Theorem for Free-Choice Nets). An el-
ementary system netN is a free-choice net if and only if each
place and each transition ofN lies in exactly one cluster ofN .

1If n = 0, thenp• = ∅.



182 Free-Choice Nets

The proof uses definition (3) of free-choice nets. IfN is a
free-choice net, then for each arc(p, t) there exist two possibil-
ities: either•t = {p}, in which case there exists a free-choice
cluster(p, . . . , t, . . .), or p• = {t}, in which case there exists a
deterministic synchronization cluster(t, . . . , p, . . .).

If N is not a free-choice net, then there exist an arc(p, t),
a transitionu and a placeq such thatt, u ∈ p• andp, q ∈ •t.
Thus,p andt are not part of any cluster.q t

p u

17.4 The Rank Theorem

A net that adequately models a real system is often live (each
transition may always become enabled again) and bounded
(no place may accumulate unboundedly many tokens). For a
free-choice netN , liveness and boundedness can essentially
be characterized with a connection between the clusters and
the matrix ofN : the rank of the matrixN of N is 1 less than
the number of clusters ofN . The rank ofN is, as usual, the
number of linearly independent columns ofN . This yields the
following theorem:

Theorem 29 (Rank Theorem for Free-Choice Nets). For a
connected free-choice netN , there exists an initial marking
with whichN is live and bounded if and only if

(a) N has a positive place invarianti, whose carrier contains
each place ofN

(b) N has a transition invariantj whose carrier contains each
transition ofN

(c) If the rank ofN is k, thenN has exactlyk + 1 clusters.

A comprehensible version of the nontrivial proof can be found
in [15].

The free-choice net in Fig. 17.1 satisfies the conditions (a)
and (b). However, its matrix has rank 6. The net thus violates
condition (c), because it only has four clusters.
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Exercises

1. Construct the clusters of the free-choice net in Fig. 17.2.Determine the type of each cluster.

A

B

C

D

Ea

b

c

d

e

Figure 17.2: Free-choice net

C

E

DA B

Figure 17.3: Free-choice net

2. Show that the free-choice net in Fig. 17.3 is live if its initial marking marks either of the
placesB, D or E.

3. Extend the answer to exercise 3(b) in Chap. 10.

4. Verify by means of the Rank Theorem whether there exists an initial marking for the free-
choice net in Fig. 17.4 with which it is live and bounded.

A

D

C

E

F

G

c

d

e

f

a

b

g

B

Figure 17.4: Free-choice net

Further Reading

As early as 1972, Michael H.T. Hack [33] defined free-choice nets and proposed them as
schemata for the assembly and disassembly of composed objects. Furthermore, he defined
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the basic terms of the trap and cotrap for system nets and, with them, structurally characterized
the live and safe free-choice nets (cf. Chapter 17, Theorem 28). The linear-algebraic connec-
tions with the Rank Theorem go back to the 1980s. Desel and Esparza compiled the theory of
free-choice nets in [15].
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If the free-choice structure is further restricted such that it does
not allow any choices at all, the result is amarked graph. This
restriction greatly simplifies the analysis. In particular, for
each marked graphN , there exists an initial marking such that
N is live and 1-bounded.

18.1 Defining Marked Graphs

An elementary system netN is a marked graphif for each
placep of N :

marked graph|•p| = |p•| = 1.

Figure 18.1 shows a marked graph.

B

A

H

G

D F

EC

Figure 18.1: Marked graph

The central structural properties of marked graphs are paths
and cycles. Apathof N is a sequencew = p1 . . . pn of mutu-
ally distinct places with

pi
• = •pi+1 for (i = 1, . . . , n− 1).

The sequencew is also acycleif cycle
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pn
• = •p1.

The marked graph in Fig. 18.1 has eight cycles:AB, CD,
EF, ACDB, ACEFDB, CEFD, BGFD, HFD. It is easy to see that
each cycle is a positive place invariant. Therefore:

Theorem 30(Cycle Theorem for Marked Graphs). LetN be a
marked graph and letp1 . . . pn be a cycle ofN , initially holding
a total ofk tokens. Then the following equation holds inN :

p1 + . . .+ pn = k.

18.2 Liveness of Marked Graphs

Section 14.1 has defined the liveness of a system netN . A net
N is live if for each transitiont and each reachable marking
M of N , the following holds: fromM there can be reached a
markingM ′ that enablest. For a marked graph, this property
directly follows from its structure:

Theorem 31 (Liveness Theorem for Marked Graphs). A
marked graphN is live if and only if each cycle ofN contains
at least one initially marked place.

The if-part is obvious: without an initially marked place, a
cyclew = p1 . . . pn is unmarked in each reachable marking,
becausew is a place invariant. Thus, no transition inp•i can
ever occur.

To show the only-if-part, letM be a reachable marking and
t a transition ofN . According to our assumption, each cycle of
N contains at least one initially marked place. Thus, according
to the above theorem,M also marks each cycle. Then there
exists a pathp1, . . . , pn with p•n = t such that the transition

t′ in •p1 is enabled inM . The stepM
t′

−→ M ′′ reduces the
length of this path. Via induction over the length of such a
path, a marking that enablest is eventually reached.

p1t'

...

pn t

...

Each of the eight cycles of the system netN in Fig. 18.1
contains at least one initially marked place. Thus,N is live.
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18.3 1-Bounded Marked Graphs

Section 3.5 shows the important role of 1-bounded system nets.
Live, 1-bounded marked graphs are easily characterized:

Theorem 32(Theorem on Live and 1-Bounded Marked Graphs).
A live marked graphN is 1-bounded if and only if each place
ofN is part of a cycle that initially contains exactly one token.

We show the if-part indirectly: Letp be a place that only
belongs to cycles initially containing more than one token.Be-
causeN is live, a markingM is reachable that enables the
transition inp• and thus marksp itself. We now temporarily
delete this token fromp. The netN stays live, because the
resulting markingM ′ still marks each cycle. Therefore, an-
other markingM ′′ that marksp is reachable fromM ′. With
the temporarily deleted token,p now holds two tokens.

The only-if-part immediately follows from Theorem 30.
With the exception of the three cyclesACDB, CEFD and

ACEFDB, each cycle of the system netN in Fig. 18.1 contains
exactly one initially marked place. Each place ofN lies on one
of these cycles. Thus,N is 1-bounded.

18.4 Liveness of 1-Bounded Marked Graphs

The question arises: Which marked graphs are live and 1-
bounded at the same time? The answer may be surprising:
each strongly connected marked graphN can be marked such
thatN is live and 1-bounded. A net is strongly connected if
for each two places there exists a path that connects them.

Theorem 33(Theorem on Initial Markings of Marked Graphs).
For each strongly connected marked graphN there exists an
initial marking such thatN is both live and 1-bounded.

For a proof, we start with a markingM0 that marks each
cycle with at least one token: a simple task. If now there exists
a place that only lies on cycles with more than one token, indi-
vidual tokens are deleted according to the procedure described
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in the proof of Theorem 32 until a cycle with only one token
remains. The graph in Fig. 18.1 is marked in this way.
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Exercises

1. With the help of Theorems 31 and 32, test the marked graphs of the following figures for
liveness and 1-boundedness:

(a) Figure 18.2

A B

C

D

a

b

c
Figure 18.2: System net

(b) Figure 18.1 with the initial markingM0 = ADF.

2. LetN be a marked graph, lett andu be transitions and letp be a place ofN . The transition
t is connected tou via p if •p = {t} andp• = {u}.

N is weakly connectedif for each two transitionst andu there exists a sequencet0, . . . , tn
of transitions such thatto = t, tn = u and, fori = 1, . . . , n, eitherti−1 is connected toti or
ti is connected toti−1.

Show that for each transition invariantm = (m1, . . . ,mk) of a weakly connected marked
graph, the following holds:m1 = m2 = . . . = mk.

Further Reading

Marked graphs were introduced by Genrich in [27]. A rich theory on marked graphs was devel-
oped primarily in the 1970s.



190 Marked Graphs

The Customs Facilities Problem

A surprising application of Theorem 33 is the solution to thecustoms facilities problem[26]:
Suppose a city has only one-way roads, designed such that a driver may reach each road from
every other road. Now,customs facilitiesshall be established on some roads such that all drivers
encounter at least one customs facility when driving acircuit, bringing them back to their initial
road. Furthermore, for each road there shall exist a “Sundaycircuit”: on such a circuit, a driver
encounters exactlyonecustoms facility.

The customs facilities problem pursues the question whether in every such city, customs
facilities can be distributed such that these two conditions are met.

To solve this problem, each crossroadst is modeled as a transition, each road from a cross-
roadst to a crossroadsu as a placep with arcs in the direction of travel, and each customs
facility on a roadp as a token inp.

pt u

At first, “sufficiently many” customs facilities are distributed such that each circuit has at least
one. If then a roadp only lies on circuits with two or more customs facilities, customs facilities
are moved according to the step rule of transitions, analogously to the proof of Theorem 33.
Eventually, two customs facilities will reachp. One of them is removed. This procedure is
repeated untilp lies on at least one circuit with exactly one customs facility. Thus, a Sunday
circuit is established forp.

This example is notable for the fact that an inherently static problem is solved with a dynamic
procedure.
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Many real systems have a special state in which each individual
instanceof the system terminates. The system can then be
newly instantiated.

A corresponding system net designates one of its reachable
markings as thefinal marking. Furthermore, it satisfies three
rather intuitive conditions:

• The final marking is reachable from any reachable marking.

• At the end of an instance, no tokens generated in between
remain.

• Each transition can become enabled.

We will see how these three conditions can be verified rather
easily.

19.1 Example: Models of Business Pro-
cesses

A business process is a standardized process for implementing
organizational procedures, as they usually occur in administra-
tions. A business process contains activities that are connected
to each other. In a Petri net model of a business process, each
activity is modeled as a transition. The model itself is awell-
formedsystem net.

Figure 19.1 shows a Petri net model of a business process
for developing an offer. Its final marking has a token in the
placestop.
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stopstart
receive
order

send further
inquiry

demand
revision

determine
macrostructure

receive
answer

determine
microstructure

agree upon
due date

adjust
due date

develop
design

send
offer

Figure 19.1: Business process for developing an offer

19.2 Well-Formed Elementary System
Nets

Let N be an elementary system net andE an arbitrary reach-
able marking ofN . ThenN together with the final markingE
is well-formedif N has the following three properties:well-formed system net

• The final markingE is unique: no marking of the form
E + L is reachable ifL marks at least one place.

• N is weakly live: for each transitiont there exists a reach-
able marking that enablest.

• N is terminable: from each reachable marking, the final
marking can be reached.

19.3 Deciding Well-Formedness

To decide whether an elementary system netN with the initial
markingM0 and the final markingE is well-formed, we ex-
pandN to a netN∗ and decide whetherN∗ is live and bounded.

Specifically, we construct a new transitiontE. To this end,
we construct for each placep an arc(p, tE) with the arc weight
E(p) (cf. Section 6.2) and an arc(tE, p) with the arc weight
M0(p). Arcs with an arc weight of0 are omitted. The addition
of tE to N yieldsN∗.

stopstart

. . .
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The final marking of the system netN in Fig. 19.1 has ex-
actly one token instop. Thus, the netN∗ is generated from
N by adding a new transitiont such that•t = {stop} and
t• = {start}. The two (omitted) arc weights both have the
value 1.

With the concepts of liveness (each transition can always
become enabled again) and boundedness (for each placep there
exists a natural numbern such thatM(p) ≤ n for each reach-
able markingM ) the concept of well-formedness can be char-
acterized:

Theorem 34(Well-Formedness Theorem). An elementary sys-
tem netN with a final markingE is well-formed if and only if
N∗ is live and bounded.

This theorem defines well-formedness in terms of already-
known concepts. The well-formedness ofN in Fig. 19.1, for
instance, can be verified with the Rank Theorem from Sec-
tion 17.4, becauseN is a free-choice net.
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Exercises

1. Does there exist a final markingE such that the system net in Fig. 19.2 is well-formed with
E?

A

C

B

Figure 19.2: System netN

* 2. Prove the Well-Formedness Theorem.

3. Show by means of the Well-Formedness Theorem and the Rank Theorem that the system
net in Fig. 19.1 with the final markingstop is well-formed.

Further Reading

The concept of well-formed elementary system nets and theirusage for modeling business
processes were introduced by van der Aalst [1]. He discussesadditional variants and aspects of
“well-formed” behavior and proves the Well-Formedness Theorem (Theorem 34).



19.3. Deciding Well-Formedness 195

Safety and Liveness

Since the 1970s, a system net has been calledn-safeif each reachable marking marks each place
with at mostn tokens. We call such system netsn-boundedin this book. Back then,liveness
and many of its variants stood for aspects of the reachability of markings and the possibility to
enable transitions (starting from the initial marking, or an arbitrary reachable marking). Since
the early 1980s, temporal logic has distinguishedsafety properties(intuitively: “something bad”
never happens) andliveness properties(intuitively: eventually, “something good” happens).
Each property of a system net can be composed from its safety and liveness properties [5]. A
sensible description of the requirements of a system alwaysincludes properties of both types.

State and run properties, as defined in Chapters 9 and 16, are special safety and liveness
properties, respectively. Usually, they are fully sufficient to describe the central requirements
of a system model. Typical properties that cannot be formulated this way pertain to individual
steps (for instance: “each step increases the number of tokens by 1”). However, such prop-
erties directly follow the step rule for transitions. Moreover, interesting system properties are
interesting precisely because they do not only pertain to individual steps.





Part III

Case Studies
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This selection of a few examples from hundreds of interest-
ing case studies seems arbitrary and requires an explanation.
We will introduce a variety of problems that cannot be solved
with other modeling techniques, or at least not with the same
set of principles.

In many contexts,mutual exclusionis one of the fundamen-
tal problems of distributed systems. Implicit assumptionsoften
motivate a favored solution. Petri nets make these assumptions
explicit.

TheCounterflow Pipeline Processor(CFPP) is an extreme-
ly dynamic hardware architecture. Its asynchronous designbe-
comes particularly clear in a Petri net model.

In anagent network, each agent only communicates with its
respective neighbors without knowing the layout of the entire
network. With very few exceptions, each agent uses the same
local algorithm. This gives rise to the problem of how to model
and verifyall such networks with a single model. Petri nets
offer adequate notations for this.

Each of the three case studies additionally introduces a new
modeling or analysis technique: Mutual exclusion can only be
modeled with the notion offairness. For the CFPP, we analyze
a solution to its synthesis problem. Agent networks use system
netschemata.
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By the 1960s, mutual exclusion was recognized as one of the
central problems in the organization of computer systems. It
arises whenever a resource can be accessed by only one of
many processes at any one time (for instance, a processor, a
printer or a communications device). While a process is using
the resource, it is in itscritical state. An agreement between
the processes has to guarantee that no two processes can be in
their critical states at the same time. We will introduce such
an agreement in which processes can only communicate via
asynchronous messages.

20.1 The Problem

critical

waiting

local

critical

waiting

local

key

a

b

c

e
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f

e el
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l

r

r
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With the system net in Fig. 3.2, we have already introduced
a model that guarantees the mutual exclusion of the two pro-
cessesl andr: they never reside in their critical states simulta-
neously. Amutex algorithmalso guarantees that each process
that wants to enter its critical state will eventually be able to do
so. To specify this, we take another detailed look at the three
stateslocal, waiting and critical as well as the steps between
them:

(1) Statelocal: this is a state in which the process only works
with its own data.

(2) Step fromlocal to waiting: with this step a process an-
nounces its intention to use the limited resource. This step
can be executed spontaneously at any time. A mutex algo-
rithm cannot influence this step. A process isnot obliged
to execute this step. It may forever remainlocal. Thus,a is
a cold transition.
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(3) Statewaiting: in this step the process expects the mutex al-
gorithm to permit it to enter itscritical state. The algorithm
may break downwaiting into several intermediate states.

(4) Step fromwaiting to critical: a mutex algorithm may require
certain preconditions to be met before a process can exe-
cute this step. Eventually, however, this step always has to
be possible: the mutex algorithm has to allow this step (and
its intermediate steps) not only for a few time intervals, but
continuously until the process has reachedcritical. At the
same time, the mutex algorithm can rely on the process to
actually execute this step (and its intermediate steps). We
will see that the algorithm in Fig. 3.2 does not guarantee
this.

(5) Statecritical: this is the state in which the process uses the
limited resource.

(6) Step fromcritical to local: the process may execute this
step spontaneously at any time. A mutex algorithm cannot
influence this step. A process isobliged to execute this
step. It must not remaincritical forever.

20.2 Realizability

An elementary system net that models a mutex algorithm (i.e.,
requirements (1)–(6) in the previous section) sensibly describes
each of the three local states of each process with a 1-bounded
place. (2) requires a cold transition fromlocal to waiting for
each process. (6) requires a hot transition fromcritical to local.
Figure 20.1 outlines these connections. The “cloud” indicates
the scope of the mutex algorithm.

We now assume an elementary system netN and derive a
contradiction. With this, we show that no elementary system
net can model a mutex algorithm.

Figure 20.2 shows a complete distributed run of the system
netN outlined in Fig. 20.1. In this run, the left processl (top
row) becomes critical infinitely often, while the right processr
(bottom row) remains local forever. (For our purposes,r could
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waiting
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waiting

critical critical
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Figure 20.1: A few components of a mutex algorithm

become critical a finite number of times and then remain local.)
This run meets all six requirements from Section. 20.1.

Figure 20.3 shows an extension of this run: the right pro-
cess executed a step towaiting. This is possible, because of
requirement (2). This run is also complete. However, it vio-
lates requirement (4). Therefore,N is not a mutex algorithm.

locall waitingl locall

localr

criticall

Figure 20.2: A valid run of a mutex algorithm

locall waitingl locall

localr waitingr

criticall

Figure 20.3: An invalid run

20.3 Fairness Assumptions

With the help of a new notation we can nevertheless construct
mutex algorithms. To do this, we take another detailed look
at the system netN in Fig. 3.2: it approximates a mutex al-
gorithmA, because each “intended” run ofA is also a run of
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N . However,N also has additional, “unintended” runs, for in-
stance (with a coherent renaming of the places and transitions),
the sequential run

ADE
d

−→ ADF
a

−→ BDF
b

−→ CF
c

−→ ADF
a

−→ BDF
b

−→ . . .

This run enables transitione an infinite number of times, with-
out e ever actually occurring. This is (intuitively) an “unfair”
treatment ofe. Likewise, all runs that treatb unfairly are “un-
intended”. This observation motivates the following definition
of a sequential runw = S0

t1−→ S1
t2−→ . . . of an elementary

system netN and a transitiont of N : w ignores fairness fort
if t is enabled in infinitely many markingsSi, but occurs only
a finite number of times inw (for only a finite number of in-
dicesi: t = ti). The runw respects fairness fort if w does
not ignore fairness fort. A distributed runK respects fairness
for t if each sequential run ofK (as described in Section 4.1)
respects fairness fort. To limit the set of runs of a system net
N to those runs respecting fairness for a transitiont, the tran-
sition t is labeled with “ϕ” in the graphical representation of
N .

Thus, the system netN in Fig. 3.2 describes a correct mutex
algorithm if the two transitionsb ande are labeled with “ϕ”.
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Even without formally defining “implementability”, it is easy
to see that fairness cannot be implemented. The observation
that fairness cannot be approximated with finite means makes
this particularly clear: each finite initial segment of an un-
fair distributed run can be continued as a fair distributed run.
Whether or not fairness is correctly implemented could only
be decided “after an infinite amount of time.” The assumption
of fairness for transitions thus increases the expressive power
of Petri nets.

However, a fairness requirement of the form “the transi-
tion t eventually occurs” can be implemented more strictly
as “t occurs after at mostk cycles.” Such an algorithm reg-
ulates the flow of tokens in•t. For the left process this ap-
plies to transitionb with the placesB andD. The algorithms
of both processes access the placeD. Thus, they have to syn-
chronize themselves. Instead, we look for a mutex algorithm
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whose transitions that require fairness have their pre-sets en-
tirely within the respective processes.

20.4 Mutex with Autonomous Fairness

We construct an algorithm with atokenthat only one of the
processes can possess at any one time. The process possessing
the token can immediately execute its step fromwaiting to crit-
ical. The process not possessing the token can, whilewaiting,
send a message to its partner to request the token. As soon as
the partner yields the token, the process will becomecritical.
A process possessing the token, when receiving such a request
from its partner, will eventually yield the token.

j j

locall waiting l

available
l

requested l requested r

yielded l

activatedl

granted l

critical
l

localrwaitingr

available r

yielded r

activated r

granted r

critical r

c j

f n

e m

a b h g

d k

e e

Figure 20.4: Message-based mutex

Figure 20.4 replaces the “cloud” in Fig. 20.1 and shows the
algorithm. In the given initial marking, the left process isin
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possession of the token (availablel). Therefore, the left pro-
cess can immediately execute the step fromwaitingl to criticall
via transitiona. The right process does not possess the token,
but can, once it reacheswaitingr, execute the step toactivatedr

via transitionh, thereby sending a message to the left process
(requestedl). The left process can respond to this message by
yielding the token via transitionc (yieldedr), whereupon the
right process reachescriticalr via transitionk. The label “ϕ”
(indicating “fairness”) in transitionc rules out “unfair” behav-
ior. The left process would be unfair if it always ignored a
pending request from the right process (requestedl), i.e., the
choice between transitionsa andc was always decided in fa-
vor of a and thus to the disadvantage ofc.

20.5 The Scenarios of the Algorithm

For a systematic understanding of the algorithm, it is helpful to
examine its scenarios. In fact, the algorithm is scenario-based.
With the denotations in Fig. 20.5, the scenarioSl in Fig. 20.6
describes the cycle in which the owner of the token (i.e., in
Figs. 20.4 and 20.5 the left process) becomescritical. The cor-
responding scenarioSr (with a token initially inM instead of
N) is obvious.

Figure 20.7 shows the partial runAr in which the right pro-
cess

• requests the token viah,

• receives the token and becomescritical via k

• and yields the token viaj.

The corresponding partial runAl (with a token initially inC
instead ofB) is obvious.

Figure 20.8 shows the partial runBl in which the left pro-
cess

• yields the token viac,

• requests the token viab
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Figure 20.5: Renaming of places and transitions

• and receives the token and becomes critical viad.

The corresponding partial runBr (with a token initially inM
instead ofN) is obvious.

The communication channelsG, K, H andJ of the algorithm
occur in bothAr andBl as labeled places. By merging those
places ofAr andBl that have the same label, a scenario,S1,
is generated in which at first the right and then the left process
becomes critical. Likewise, let the scenarioS2 be composed of
Al andBr.

Each distributed run of the system net in Fig. 20.5 consists
of instances of the four scenariosSl, Sr, S1 andS2. Thus, the
mutex algorithm is indeed scenario-based.
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Figure 20.6: The scenarioSl
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Figure 20.7: The partial runAr

20.6 Correctness of the Algorithm

As for each mutex algorithm, we have to show that, next to the
actual mutual exclusion property, the six requirements from
Section 20.1 are satisfied by the algorithm in Fig. 20.4. With
the exception of requirement (4) they are all obviously ful-
filled.

With the denotations in Fig. 20.5, the logical expression
¬(E ∧ Q) and thus the inequality

E + Q ≤ 1 (1)

describes the mutual exclusion property. Its validity follows
immediately by subtracting the canonical inequalities ofB, K,
M andJ from the place invariant

E + B + K + Q + M + J = 1.

Next to the state property (1), the algorithm has to satisfy
the run property (4) from Section 20.1: in each run, each wait-
ing process will eventually become critical. In Fig. 20.5, for
the left process, this is the property

A 7→ E. (2)
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Figure 20.8: The partial runBl

We will show (2) by means of a proof graph, as introduced
in Chapter 16. Figure 20.9 shows this proof graph. The cor-
rectness of both proof graphs follows from the reading rule
and place invariants, with the exception of step 5 in Fig. 20.9:
HM 7→ J. This step needs a rule exploiting the fairness as-
sumption for transitionj. It prevents the infinite repetition of

the cycleM
g

−→ Q
m
−→ M. Such a rule is described in [64].

1.A 5.HM3.AC
c

7.JD
d

2.AB

a

6.J
b

4.H
j

Fig.
20.10

8.E

Figure 20.9: Proof graph forA 7→ E

1.H 3.HKP
k

2.HK 5.HM4.HQ
m

Figure 20.10: Proof graph forH 7→ HM
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Exercises

1. Show the correctness of the proof graphs in Figs. 20.9 and 20.10.

2. Construct the scenariosS1 andS2 described in Section 20.5.

Further Reading

A series of solutions to the mutual exclusion problem originally formulated in programming
languages were also reproduced as Petri nets [64]. The postscript to Chapter 4 discusses some
general problems of such Petri net reproductions. Kindler and Walter show in [40] that each
mutex algorithm for autonomous processes requires some form of fairness assumption.
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The Problem of Mutual Exclusion

The problem of mutual exclusion occurs in many variations. Those variations differ particularly
with respect to:

• the number of processes and the topology of their networking: Chapter 20 introduced a
solution for two processes, Section 9.3 for five processes (“philosophers”). If we call two
processesneighborsif they share a limited resource (“chopstick”), then the neighbor rela-
tion of the five philosophers forms a circle. In general, there exists an arbitrary number of
processes and very different patterns of the neighbor relation. Apart from circles, other com-
mon patterns are stars, grids, trees andn-dimensional cubes (“hypercubes”). Furthermore,
the number of simultaneous users of a limited resource is notnecessarily two.

• the assigning of the limited resource: so far, we have only seen examples in which each
limited resource has a predefined set of users. This is not always the case. For instance, it
may be irrelevant to which of two available printers a process sends its documents.

• the communication between the processes: in the solution inFig. 20.4, the processes com-
municate via messages. In other solutions, they access a shared variable or execute joint
activities.

• the influence of a global instance: an example of such an instance is an operating system
managing the processes and resources. In contrast, the solution in Chapter 20 uses homoge-
neous processes, which are not controlled by any global instance.

The formulations of and solutions to the different variantsof the problem depend heavily on the
modeling technique employed. Shared variables are commonly used. Thereby, each variable
is owned by a process that can update it. Other processes may only read the variable. The
necessary fairness assumptions are integrated into the modeling language itself: an unbounded
sequence of reading operations of a variablex can be interrupted by the variable’s owner in
order to updatex. During the modeling of such variables with Petri nets (cf. Chapter 4’s
postscript “Read and Write vs. Give and Take”) these fairness assumptions become obvious. In
Lamport’s “Bakery Algorithm”, the fairness assumption is incorporated into a display panel of
which all processes require an unimpeded view.

In practice, such fairness assumptions can often be neglected: “long-lasting” accesses to
limited resources can be organized by “short” accesses to other resources.
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This case study describes the systematic construction of asyn-
chronous hardware. It uses the example of an extremely dy-
namic architecture of a processor that adapts to the current
availability of data packets and functions, as well as the vary-
ing durations of individual calculation steps.

21.1 The Counterflow Pipeline Proces-
sor (CFPP): The Problem

The Sprout counterflow pipeline processor is a well-known,
complex, asynchronous hardware architecture. We model the
abstract principle of its behavior on the level of its data and
control flows: a streamd1 . . . dn of data packets and a stream
f1 . . . fm of instructions both reach a processorP . The proces-
sor then sequentially applies all instructionsf1, . . . , fm to each
data packetdi and then outputs the resulting data packets

ei =def fm(. . . f2(f1(di)) . . .)

for i = 1, . . . , n in sequence. AfterP has processed a pair of
data and instruction streams, it becomes ready for new pair.

In each case, the two streams may be of different lengths.
The data packets and instructions reachP asynchronously, not
in predetermined time intervals. The time it takes to applyfj
to the data packet

fj−1(. . . f2(f1(di)) . . .)

is unknown for alli andj. The processor should work as fast
as possible, that is, it should execute as many operations as
possible in parallel. At the same time, it should react as flexibly
as possible to different speeds and different lengths of data and



214 Asynchronous Hardware

instruction streams, as well as different durations of instruction
calculations.

21.2 The Solution Idea

To solve this problem, the CFPP architecture utilizes a se-
quenceP = M1 . . .Mk of consecutively linked modules, as
outlined in Fig. 21.1. The data packetsd1, . . . , dn flow from

dn ... d2 d1

f1 f2 ... fm

. . .

en ... e2 e1

f1 f2 ... fm
M1 M2 Mk

Figure 21.1: Assembly of the CFPP from modulesMi

the left, that is, viaM1, into P . The computed data packets
e1, . . . , en leaveP on the right, viaMk. Vice versa, the in-
structions flow from the right intoP and leaveP via M1. All
modules work according to the same pattern. A moduleMi

can receive data packets from its left neighborMi−1 and give
out instructions to it. To its right neighborMi+1, it can give
out data packets and receive instructions from it. The modules
communicate synchronously:Mi can give out a data packet to
Mi+1 asMi+1 receives it. Likewise,Mi gives out an instruction
to Mi−1 asMi−1 receives it.

Figure 21.2 shows the behavior of an “inner” moduleMi(i =
2, . . . , k − 1) as a state automaton. Initially,Mi can receive a
data packetd (from Mi−1) and an instructionf (from Mi+1).
WhenMi has received both – in arbitrary order – it is ready for
computation and appliesf to d. Mi can then – in arbitrary order
– give out the newly computed data packet and the instruction
to Mi+1 and Mi−1, respectively. Mi does not store anything,
then reorganizes itself and returns to its initial state.

Of particular interest are the two states (top and bottom in
Fig. 21.2) in whichMi stores either only a data packet or only
an instruction:Mi can give out the unprocessed data packet to
Mi+1, or the unused instruction toMi−1.
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with computed
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instruction

ready for
computation

receive data
packet

receive
instruction

forward
data packet

without data packet,
with instruction

reorga- compute

nize

Figure 21.2: A CFPP module as state automaton

The moduleM1 on the left edge of the CFPP architecture es-
sentially behaves like an inner module. However, it only gives
out an instructionfi to the environment afterfi has been ap-
plied to the last data packetdn. Likewise, the moduleMk on
the right edge only gives out a data packetei to the environ-
ment after the last instructionfm has been applied toei. We do
not explicitly model those two modules.

An architecture withk modules can process a streamd1, . . . ,
dn of data packets and a streamf1, . . . , fm of instructions if and
only if n andm are not both greater thank: In that case, the
data packets or instructions can all be stored simultaneously
inside the modules. A CFPP can compensate for the different
durations of instructions only ifk is greater than eithern orm.

21.3 The Synthesis Problem for the CFPP

The state automaton in Fig. 21.2 uses six different actions,four
of which can occur in two states each. We now ask for the pre-,
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a b

b a

6
f
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c

e d

d e

A = { 2, 4, 5 }, B = { 3, 4, 5 },
C = { 1, 3, 6 }, D = { 1, 2, 6 },
E = { 1, 3, 5 }, F = { 2, 4, 6 },
G = { 5, 1, 2 }, H = { 3, 4, 6 }

Figure 21.3: The eight minimal regionsA, . . . ,H of a CFPP module

post- and side conditions of their occurrences and thus for the
local states that organize a CFPP module. For this purpose,
we solve the synthesis problem for the state automaton (cf.
Chapter 7). Using the denotations in Fig. 21.3, its eight min-
imal regions generate the elementary system netN shown in
Fig. 21.4. Its marking graph is isomorphic to the state automa-
ton in Fig. 21.2. Therefore,N solves the synthesis problem for
the CFPP.

C

c

F

a

A

f

D

B

E G H

d

e

b

Figure 21.4: The solution to the synthesis problem for the CFPP
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21.4 Structural Simplification of a Mod-
ule

The structure of the system netN in Fig. 21.4 can be simpli-
fied. At first, we derive for this:

A + H + E + D = 2 place invariant

E + F = 1 place invariant

−B − D = −1 place invariant

−2E ≤ 0 canonical inequality ofE

Their addition yields:

A + F + H − B ≤ 2.

From this follows for each reachable marking that marksA, F
andH, that it also marksB. This renders the loop betweenB
andc redundant.

The argument about the loop betweenC andf is analogous.
Thus, Fig. 21.5 shows the final version of a CFPP module.

C

c

F

a

A

f

D

B

E G H

d

e

b

Figure 21.5: Final version of a module
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21.5 The Model of the CFPP

To form the CFPPP as a sequenceM1 . . .Mk of modules,k
instances of the module in Fig. 21.5 have to be combined. It is
rather simple to combine a moduleMi with its right neighbor
Mi+1: the transitione of Mi is merged with the transitiona of
Mi+1 and b of Mi with d of Mi+1. Figure 21.6 outlines this
construction.

Figure 21.6: Combination of modulesMi andMi+1 of the CFPP

21.6 Analysis of the Model

For a better understanding of the model in Fig. 21.5, the model
in Fig. 21.7 describes the intuitive meanings of some of its
components. An intuitive description of the meanings of the
placesE, F, G andH is left to the reader.

The arcs labeled with the variablex describe the path of the
data packets through the processor. Likewise, the arcs labeled
with y describe the path of the instructions. The invariantA +
C = 1 in Fig. 21.5 guarantees that data packets and instructions
cannot overtake each other. Accordingly,B + D = 1 holds for
instructions: a moduleM, indeed, never stores more than one
data packetd and never more than one instructionf. If Mi stores
both, the module computes, i.e.,f is applied tod. From that
follows for each reachable markingM in Fig. 21.5: if a data
packet has been received, that is transitiona has occurred, i.e.,
M(A) = M(F) = 1, and if an instruction has been received, that
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instruction
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Figure 21.7: Module of the CFPP

is, transitionb has occurred, i.e.,M(B) = M(H) = 1, thenc is
the only enabled transition. Because of the invariantsA + C =
1, E + F = 1, G + H = 1 andB + D = 1, the placesC, E, G,
D are not marked and thus the transitionsa, d, e, b, f are not
enabled.

If Mi stores a data packetd andMi+1 an instructionf, both
of the shared transitions are enabled. In that case, it is decided
nondeterministically whetherMi or Mi+1 computesf(d).



220 Asynchronous Hardware

Exercises

1. Describe the intuitive meanings of the placesE, F, G andH in Fig. 21.7.

* 2. Construct the model of the module in Fig. 21.5 for two neighboring modulesMi andMi+1.
Let Mi store a data packet, but no instruction, and letMi+1 store an instruction, but no data
packet. Show thatMi andMi+1 share two transitions that are in conflict with each other if
both are enabled.

Further Reading

The concept of the Sprout CFPP and the modeling idea of this chapter are described by Yakovlev
and Koelmans in [81]. Problems with the synthesis of distributed systems from a sequential
description of their behavior often occur in hardware design. Algorithms for their solution have
therefore been integrated into thePetrify tool [13]. Petri nets are successfully used as a modeling
tool for hardware systems.



Network Algorithms Chapter 22

Nowadays, computers often function as nodes of a network. In
such a network, two nodes can be connected to each other by
a communications channelvia which they can exchange mes-
sages. Such nodes areneighbors.

Figure 22.1 shows two networks,N1 andN2, with the nodes
α, β, . . .. Both are connected. In contrast toN1, the network
N2 is acyclic: no sequence of edges forms a cycle.

N1 :

a

b

g

d

N2 :
a

b

g ed

Figure 22.1: Two agent networks

In a network, there exist some typical tasks: a node sends
a message over the network to all other nodes, the nodes syn-
chronize themselves (as far as possible) in cycles or they reach
mutual agreements. In this chapter, we discuss solutions to
such tasks. Other typical tasks relate to the organization of
limited resources, the distribution of tasks or the reinitializa-
tion after a critical error.

Such tasks are not easy to solve, because each node gener-
ally only has a small number of neighbors. No node “knows”
the entire network. Furthermore, a solution is supposed to
work not only for a specific network, but for infinitely many,
for instance, for all connected or for all acyclic networks.
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22.1 Some Conventions for the Repre-
sentation of Network Algorithms

We model algorithms for the solution of the types of tasks de-
scribed above as Petri netschemata. Such a schema is a net
structure, labeled withsymbolsthat can beinterpreted. Each
sensible interpretation generates its own concrete, finiteagent
network.

We typically use the symbolU to denote the set of agents in
a network. The neighbors of a network are given as a relation

N ⊆ U × U.

A tuple (u, v) ∈ N thus describes a communications chan-
nel. We assume symmetrical communications channels, which
means that(u, v) ∈ N implies(v, u) ∈ N . In the networkN1

in Fig. 22.1,U = [α, β, γ, δ] andN = [(α, β), (β, α), (α, γ),
(γ, α), (β, δ), (δ, β), (β, γ), (γ, β), (γ, δ), (δ, γ)].1

We also use a tuple(u, v) to denote a message fromv to u.
In general, a message is always of the form

(recipient, sender).

For an agentu, letN(u) be the set of messages(v, u) to all its
neighborsv and letN(u) be the set of messages(u, v) fromall
its neighborsv. Thus, in the networkN1 in Fig. 22.1

N(α) = [(β, α), (γ, α)] and (1)

N(α) = [(α, β), (α, γ)]. (2)

With these conventions, we first explain the idea of Petri net
schemata, using the example of theEcho Algorithm.

22.2 The Echo Algorithm

For a connected network with a distinguished “initiator” node
i, this algorithm organizes the distribution of a message from

1We denoteU andN as well as several other sets as multisets here, in
order to stay consistent with the arc labelings of the nets.
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the initiator to all other nodes of the network. The initiator
terminates when all nodes have confirmed the receipt of the
message.

a b
a

messages from a

N(a) N(a)

messages to a

a waiting a terminated
a a a

a

a before start

Figure 22.2: The behavior of the initiatorα

As an example, letα be the initiator of the networkN1

in Fig. 22.1. Figure 22.2 shows its behavior: the transition
a sends messages fromα to the neighborsβ andγ. According
to (1), this generates the tokens(β, α) and(γ, α) in the place
“messages from α.” When later the place “messages to α”
has received the tokens(α, β) and(α, γ) (cf. (2)), transitionb
can occur. In this representation,N andN are merely symbols.
They first have to be interpreted according to the specification
in Section 22.1 before one can talk about markings.

A non-initiator node becomes active as soon as it receives
its first message. It then chooses one of its neighbors as its
“pivot neighbor.” Figure 22.3 shows the behavior of the node
γ (seeN1 in Fig. 22.1) withα as its pivot neighbor: the transi-
tion c sends messages to the two other neighborsβ andδ of γ
by generating the set of tokensN(γ)− (α, γ) = [(α, γ), (β, γ),
(δ, γ)] − (α, γ) = [(β, γ), (δ, γ)] in the place “messages from
α.” Then γ waits, with its pivot message(γ, α) in the place
“γ waiting with α,” for messages from the two other neigh-
bors, that is, for tokens in the setN(γ)− (γ, α) = [(γ, α),
(γ, β), (γ, δ)] − (γ, α) = [(γ, β), (γ, δ)]. The occurrence ofd
then removes all tokens from the places “γ waiting with α” and
“messages to γ,” and terminatesγ.

Instead ofα, the nodeγ can also chooseβ as its pivot neigh-
bor if the message(γ, β) reaches the place “messages to γ.”
In principle, each neighbor of a node can play the role of the
pivot neighbor.

The net in Fig. 22.4 models this possibility by means of the
variabley. The current choice of a pivot neighbor determines
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(a,g)

g
c d

(g,a) (g,a)

(g,a)

g

messages to g messages from g

g waiting with a

g

g before start

N(g)
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a,g)
N(g) - (g,a)

g terminated

Figure 22.3: The behavior ofγ with the pivot neighborα

(y,g)

g
c d

(g,y) (g,y)

(g,y)

g

messages to g messages from g

g waiting with y

g

g before start

N(g)
 - (

y,g
)

N(g) - (g,y)

g terminated

Figure 22.4: The behavior of a non-initiator agentγ

the value ofy and thus the mode of transitionc (cf. Sect. 2.6).
Each non-initiator node behaves according to the pattern

given in Fig. 22.4 for the nodeγ. The net in Fig. 22.5 models
this by making two modifications to the net in Fig. 22.4: first,
the concrete nodeγ is replaced with the variablex. Second, the
initial markingγ of the place “γ before start” is replaced with
the symbolU′. With this, we model the behavior of arbitrary
networks.U denotes the set of all nodes andU′ = U − i the set
of all nodes except the initiator. Thus, forN1 in Fig. 22.1, the
following holds:

U = [α, β, γ, δ], i = α, U′ = [β, γ, δ].

An agentu with only one neighborv (for instance,α, β or
ε in N2 in Fig. 22.1) can only choosev as its pivot neighbor.
In this case, the transitionc in Fig. 22.5 only has the mode in
which x = u andy = v. The arc labelM(x) − (y, x) is then
reduced toN(u)− (v, u) = (v, u)− (v, u) = [ ]. The transition
c thus does not send any message. Accordingly,d also does
not expect a message.

For the final model of the Echo Algorithm, the four places



22.2. The Echo Algorithm 225

for sent, but not yet received messages in Figs. 22.2 and 22.5
are combined into asingleplaceD in Fig. 22.6. Furthermore,
the agentγ is replaced with the symboli for the initiator.

(y,x)

c d
(x,y) (x,y)

(x,y)

messages to x messages from x

x before start

N(x) -
 (y

,x)
N(x) - (x,y)

x x
U�

x waiting with y x terminated

Figure 22.5: The behavior of the non-initiator nodes

Figure 22.6 does not show an example of system nets as
they have been introduced in Sect. 2.7. To begin with,i, U′,
N and N are merely symbols. To describe a concrete agent
networkA, as explained in Sect. 22.1, the symboli has to be
interpreted as the initiator,U′ as the set of all other agents of
A, andN as well asN as functions for the generation of the
network’s messages. Thus, Fig. 22.6 forms aschemaof an
algorithm for anarbitrary agent network.

A
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GF
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B

(y,x)

x
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d

a b

(x,y) (x,y)

i i i i

(x,y)

i

U'

N(i) N(i)

N(x
) -

 (y
,x

) N(x) - (x,y)

Figure 22.6: The Echo Algorithm

On this schema level, we can now show the correctness of
the algorithm for each concrete connected networkA. Two
properties characterize the correctness of the algorithm:

1. The state property “If the initiator terminates, all other nodes
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have been informed”:

N |= C.i −→ G.U′.

2. The run property “Starting from the initial state, the initia-
tor terminates”:

N |= A.i ∧ E.U′ 7−→ C.i.

The properties can be proved with the help of three equations:

A + B + C = i,

E + pr1(F) + G = U′ and

N(A) + N(C) + D + N(E) + F + F + N(G) = N(U).

In the second equation,pr1 denotes the projection onto the first
component. The validity inN can be easily asserted by means
of place invariants.

22.3 Synchronization in Acyclic Networks

Network algorithms often operate in cycles: each node alter-
nates between the states “active” and “passive” and starts each
successive cycle with “active.” We describe an algorithm that
synchronizes the nodes as tightly as possible: simultaneously
active nodes are in the same cycle. Initially, each node is active
in the0th cycle.

As in the Echo Algorithm, each nodeu has a pivot neigh-
bor v in each cycle. Here, however,u initially does not expect
a message fromv, but from each of theother neighbors. As
an example, Fig. 22.7 shows the second cycle of the nodeγ
in the networkN2 in Fig. 22.1, withδ as its pivot neighbor.
The transitiona is enabled with the token setN(γ) − (γ, δ) =
[(γ, α), (γ, β), (γ, δ)] − (γ, δ) = [(γ, α), (γ, β)]. The occur-
rence ofa sends the message(γ, δ) from δ to its current pivot
neighborγ. In the statepassive, γ waits for a message(γ, δ)
from δ and sends messages to its two other neighborsα andβ.
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a b
(g,0) (g,d,0) (g,d,0) (g,1)

messages to g messages from g

passive
active in
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(d,g) (g,
d)

N(g) - (d,g)N(g) - (g,d)

(g,0)

(g,b)
(g,a)

Figure 22.7: The cycle of the nodeγ with the pivot neighborδ

a b
(g,0) (g,y,0) (g,y,0) (g,1)

messages to g messages from g

passive
active in
cycle 0

active in
cycle 1

(y,g) (g,
y)

N(g) - (y,g)N(g) - (g,y)

(g,0)

Figure 22.8: First cycle of the nodeγ with an arbitrary pivot neighbor

To express that, in principle, each neighbor ofγ can play the
role of the pivot neighbor, we replace the nodeδ in Fig. 22.7
with the variabley (Fig. 22.8).

Each node behaves according to the pattern shown for the
nodeγ in Fig. 22.8. Analogously to the step from Fig. 22.4 to
Fig. 22.5 for the Echo Algorithm, Fig. 22.8 is now the basis for
Fig. 22.9: in the arc labelings, the nodeγ is replaced with the
variablex and the constant cycle number0 with the variable
i. In the place “active in cycle i,” the nodeγ with the cycle
number0 is replaced with the set of nodesU of an arbitrary
network. Thereby, each node inU has the cycle number0.2

a b
(x,i) (x,y,i) (x,y,i) (x,i+1)

messages to x messages from x

passive
active in
cycle i

active in
cycle i+1

(y,x) (x,y)

N(x) - (y,x)N(x) - (x,y)

U  0´

Figure 22.9:ith cycle of an agent

2In analogy to the Cartesian product, let[a1, . . . , an] × [b] =def

[(a1, b), . . . , (an, b)].
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In the place “active in cycle i,” a nodeu with only a single
neighborv enables the transitiona in the modex=u without any
pending messages tou. Thus, those nodes start a new cycle.
Our algorithm is correct foracyclic, finite networks. Each such
network has at least two nodes with only one neighbor each.

We develop Fig. 22.10 from Fig. 22.9 by

• combining the places “active in cycle i” and “active in cycle
i+1” into a single placeA,

• combining the sent, but not yet received messages into a
single placeB,

• renaming the place “passive” to C.

(x,i+1)

(x,y,i)

(x,i)

(x,y,i)

(y,x)(x,y)

N(x) - (y,x) N(x) - (x,y)

ab

A

C

B

U´0

Figure 22.10: Synchronization in acyclic networks

Technically, a cycle of all nodes together forms a scenario (cf.
Chap. 5) for markingsM with pr1(M(A)) = U. Three proper-
ties characterize the correctness of the algorithm in Fig. 22.10:

1. the state property “two active nodes are in the same cycle”:

A.(u, n) ∧ A.(v,m) −→ n = m,

2. the state property “the cycle number of a passive and an
active node differs by at most1”:

A.(u, n) ∧ C.(v,m) −→ |n−m| ≤ 1,
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3. the run property “if the agentu has reached itsith cycle, it
will eventually reach the(i+ 1)th cycle as well”:

A.(u, i) 7−→ A.(u, i+ 1).

The properties can be proved with the help of three equations:

1. Each node is either active or passive:

pr1(A) + pr1(C) = U,

wherepr1 maps a tuple to its first component, i.e.pr1((u, i)) =
u andpr1([(u1, i1), . . . , (un, in)]) = [u1, . . . , un].

2. From and to passive components, messages are underway:

B + B + N(pr1(C)) + N(pr1(C)) = 2(pr1,2(C) + pr2,1(C)),

wherepr1,2(a, b, c) = pr2,1(b, a, c) = (a, b) and (a, b) =
(b, a).

3. The third equation covers all the places and includes the
cycle number. Furthermore, it uses four functions that map
each agent and each number to a multiset of node pairs:

α(u, n) =def 2n ·N(u),

α(u, n) =def 2n ·N(u),

β(u, n) =def 2(n+ 1) ·N(u),

β(u, n) =def 2(n+ 1) ·N(u).

This yields the following equation:

α(A) + B + β(pr1,3(C)) = α(A) + B + β(pr1,3(C)).

As before with the Echo Algorithm, these equations are de-
rived from place invariants.
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22.4 Consensus in the Network

The nodes of a network often want to reach a mutual agree-
ment. To do this, each node can send its neighbors a request
and respond to requests from its neighbors. The algorithm
terminates when all nodes have reached an agreement. To
this end, each message contains not only the recipient and the
sender, but also a “tag” with “?” or “!” that indicates whether
the message is a request of the sender to the recipient or a
response of the sender to a previous request of the recipient.
Thus, a message is of the form

(recipient, sender, ?) or (recipient, sender, !).

Let Q(u) denote the set of all requests (v,u,?) of a nodeu
to its neighborsv, and letR(u) denote the set of all responses
(u,v,!) from its neighborsv to u.

For the nodeα of the networkN1 in Fig. 22.1, for instance,
the following holds:

Q(α) = [(β, α, ?), (γ, α, ?)] and (3)

R(α) = [(α, β, !), (α, γ, !)]. (4)

Figure 22.11 shows howα assents to current agreements or
sends new requests. If all neighbors ofα have responded to
its requests (place “α is informed”) and α is still negotiating,
there exist two possibilities: eitherα agrees (transitiona) or α
sends new requestsQ(α) (see (3)) via the place “requests from
α” to its neighborsβ andγ (transitionc) and then waits until
both neighbors have responded with tokensR(α) (see (4)) in
the place “responses to α.”

Figure 22.12 shows howα responds to requests from its
neighbors: ifα has already agreed to the present agreement
and then receives a new request, it will again become ready to
negotiate (transitionb). If α is still negotiating anyway, it will
stay in this state (transitione).

From Figs. 22.11 and 22.12, we derive the Consensus Al-
gorithm shown in Fig. 22.13 by

• combining the two figures,
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• expanding the behavior to include all nodes inU, thereby
replacing the constantα with the variablex,

• combining the four places with sent, but not yet received
requests and responses into asingleplaceD.
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Figure 22.13: The Consensus Algorithm

Three properties characterize the correctness of the algorithm
in Fig. 22.13:

1. the state property “if the nodeu has agreed, thenu is in-
formed”:

B.u → C.u,

2. the state property “if all nodes have agreed, then no more
messages are underway”:

B.U → D = [ ],

3. the run property “each nodeu always becomes informed
again”:

true 7−→ C.u.

The properties can be proved with the help of two valid equa-
tions and one inequality:
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1. Each node is still negotiating or has agreed:

A + B = U.

2. Each node is either informed, or messages from or to it are
underway:

Q(C) + R(C) + D + pr2,1,3(D) = Q(U) + R(U),

wherepr2,1,3(a, b, c) =def (b, a, c).

3. Each node is still negotiating or is informed:

A + C ≥ U.

As with the previous two algorithms, the two equations are
directly derived from place invariants. The inequality follows
from an initially marked trap.
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Exercises

1. For the Echo Algorithm in Fig. 22.6: construct its matrix and the initial marking in vector
notation and find three place invariants that prove the equations at the end of Section 22.2.

2. For the Consensus Algorithm in Fig. 22.13:

(a) Construct its matrix and the initial marking in vector notation and find two place
invariants with the carriers{A,B} and{C,D}, respectively.

(b) Show that{A,C} is a trap.

*(c) From the place invariants and the trap, derive the threeproperties discussed in Sec-
tion 22.4.

Further Reading

A network algorithm describes the behavior of a whole class of networks. With a (generic)
system net as in Chap. 2, it is possible to describe the behavior of, at most, a single network.
Therefore, we have usednet schematahere. Further network algorithms modeled as Petri net
schemata and further distributed algorithms in general aredescribed in [64].



Part IV

Conclusion





Closing Remarks Chapter

23.1 A Brief History of Petri Nets

In the 1960s, Carl Adam Petri’s proposals for the modeling of discrete, asynchronous systems
were too advanced for practical application and the “wrong”topic for the theory at that time.
Accordingly, the responses were limited at first, but at least the MAC project at MIT picked up
Petri nets in the late 1960s. In the 1970s, Petri nets were often used (inappropriately) to char-
acterize formal languages. The reachability problem was long regarded as the central challenge
in this area. In the early 1980s, “colored” tokens significantly increased the expressive power
of Petri nets, and modeling tools enhanced their applicability in larger projects. At the same
time, Petri nets entered into a fierce competition with othermodeling techniques. The gen-
eral interest in modeling techniques, especially graphical ones, which had been growing since
the 1990s, eventually established Petri nets as an important contribution to computer science.
Since 1979, an annual conference, summer schools, workshops and anthologies on specific top-
ics have come on the scene. The number of publications on Petri nets is in the five-digit range.
Historical overviews can be found in [69] and [60].

23.2 Properties of the Elementary Formalisms of Petri Nets

Every technique for the modeling of discrete, dynamic systems describesstatesandsteps. Apart
from this, their elementary formalisms can differ fundamentally. State charts, for instance,
use hierarchically and parallelly composed state components. Process algebras emphasize the
binary synchronization of actions in steps and the inductive buildup of models. Petri nets use
multisets as state components. Steps arelinear, local and reversible. For Petri net schemata
(Chapter 22), they are alsouniversal. The following explains what this means in detail, what
advantages it brings and which other modeling techniques partially work according to similar
principles.

Multisets are an appropriate data structure: a series of modeling techniques for discrete sys-
tems with asynchronous components use multisets as their primary data structure [14], among
them LINDA, the Chemical Abstract Machineand DNA Computing. Figuratively speaking,
there exists a “pot” and processes can add elements to and remove them from it. This pot
metaphor exists in many variants. A Petri net models such “pots” as places.
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The reason for choosing multisets instead of regular sets isobvious: to put an element into
a “pot,” it would otherwise be necessary to search the whole pot for another occurrence of the
element. This would prevent the mutually independent (“asynchronous”) access of multiple
processes to such a pot.

Steps are “linear”: LetM1
t

−→ M2 be a step. ThenM1 + M
t

−→ M2 + M is also a step
for each markingM . In particular, with the markingn ·M1, the transitiont can occur at least
n times: steps behave in alinear fashion. All modeling techniques that use multisets as their
elementary data structure also use linear steps. The linearity of steps is also essential for the
calculi of place and transition invariants.

Transitions have local causes and effects. The preconditions for the occurrence of a transition
t are entirely located in•t. Its effect pertains to•t andt•. This locality oft immensely simplifies
the intuitive understanding.

Other modeling techniques, for instance, automata and process algebras, useactions to
model elementary steps. In such a model, one and the same action may be noted down multiple
times and in different contexts. In the automaton in Fig. 7.1, for instance, the action “switch
light off” occurs in the labelings oftwo arcs. (In the corresponding Petri net in Fig. 7.2, there
exists only a single transition “switch light off.”) To fully understand an actiont in an automaton
or process expression, it is necessary to take into account each and every occurrence oft: the
description of the meaning of asingleaction is scattered across the entire model. This problem
is even more evident in structured or hierarchical modelingtechniques, such as state charts or
message sequence charts (MSC).

For large systems in particular, the locality of transitions is of great value. Exponentially
growing state spaces stand in contrast to transitions, whose pre- and post-sets generally do not
grow significantly, even in larger systems. Thus, the matrixN of a large systemN is sparse.
Therefore, finding place and transition invariants is oftennot much more complex than in small
systems.

Locality offers additional structural arguments. This is the reason that traps, cotraps and
free-choice structures are possible in Petri nets and that they can be exploited in their analysis.
The occurrences of two locally independent transitionst andu (i.e. •t ∩ •u = ∅) are orderless
in a distributed run. Locality is thus the basis for distributed runs and thus for scenarios and
ultimately also for thestubborn setmethod of temporal logic, which increases efficiency.

Steps are “reversible”: in each modeling technique, steps of the formM
t

−→ M ′ are formed
such thatM ′ can be derived fromM and t. A step isreversibleif also M can be derived
from M ′ andt. A step of a Petri net is always reversible:M = M ′ − t. In contrast to this,
value assignments are generally not reversible. An exampleof this is the value assignment
x := 0. Intuitively speaking, given information can be returned,but deleted information cannot
be brought back. The reversibility of steps is ultimately the reason that place and transition
invariants are so powerful.
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Petri net schemata are uninterpreted: the network algorithms in Chapter 22 are formulated as
Petri net schemata. They contain the symbolsi, u, N andN , which first have to be interpreted.
Only then is a Petri net generated. Consideringall interpretations of symbols to be sets or func-
tions is well-known from predicate logic. This technique isextremely powerful and flexible.
In computer science, this idea is used for describing staticstructures in algebraic specifications
and dynamic steps, especially in abstract state machines (ASM).

23.3 Speculative Questions

In his presentation at the 26th annual meeting of the International Conference on Applications
and Theory of Petri Nets in Miami in June 2005, Carl Adam Petri praised the diversity of theory
construction and areas of application that had been achieved since his dissertation. At the same
time, he urged people to pose more fundamental questions.

In [59], Petri himself formulated a few such proposals and, in his presentations over recent
years, emphasized physics as the basis for his motivation. His concepts always had the goal
to formulate information processing independently from the current technological standards.
In fact, it is likely that hitherto unknown or unused atomic or even biological effects will be
employed for future calculations or conceived of as data processing units.

How can Petri nets contribute to the explanation or use of such effects? Let us first consider
an analogy from chemistry and physics: Among the fundamental insights of these areas are
laws of conservation. If a system does not exchange matter orenergy with its environment,
both can be transformed in various ways in the system’s interior. The sum total, however, stays
the same. Nothing is lost and nothing is added. The – not very intuitive – terms of matter and
energy are defined in exactly such a way that these conservation laws hold.

Does there exist a corresponding term for a science of information transformation? What is
conserved in the interior of a dynamic system that does not exchange any information with its
environment? Currently used terms for “information” are obviously not very helpful here.

Petri nets may help to coin an appropriate term: their elementary dynamic concept isre-

versible. If the markingM ′ and the transitiont are known for a stepM
t

−→ M ′, then the initial
markingM can be back-calculated. For a classic value assignment, forinstance,x := 1, the
original value ofx cannot be back-calculated. Reversibility in dynamic processes supports fun-
damental invariance from which, already in 1967, Petri constructed a reversible propositional
logic [57].

The insight that the partial independence of components decisively structures a system is
equally important: the causal partial order of events is in itself objective and does not need an
“observer,” who forces events into a “temporal” order.

It is currently not foreseeable how far-reaching these and others of Petri’s proposals are.
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With the currently available concepts of Petri nets, we are able to build better systems. At the
same time, we should be prepared for surprises in the future.

23.4 Petri Nets in Software Engineering

Because software and computer-integrated systems are more and more often abstractly modeled
before their actual implementation, the role of Petri nets grows as they successfully combine
intuition and precision during the planning and configuration of IT products. The techniques
introduced in this book are sufficient to represent causal interrelations in the control flow and
simple structures in the data space. However, not all important aspects of complex software
models can be expressed in this way. There are two groups of aspects that have not been
covered here: the first group is temporal and stochastic interrelations of actions, which need to
be expressible. Petri nets were extended very early to allowfor these aspects to be modeled.
Thus, a series of variants were created and many software tools support these aspects. [4], [41]
and [7] further address these questions.

The second group of aspects that were not covered in this bookrelates to the appropriate han-
dling of large system models. Such models have to be systematicallycomposedfrom smaller
ones. Basic ideas for this have been discussed in Chapter 8. Equally important is therefinement
of components. In the simplest case, a transitiont is replaced with an interface net whose in-
terface consists of the places in•t ∪ t•. An overview of the different variants of refinement and
composition can be found in [30].

Large systems are nowadays designed in a systematic process, aided by software tools. There
is a series of such design procedures that are based on Petri nets. The most universal and most
common approach is based on “colored nets” [38], a special variant of system nets.

Numerous other proposals pick up the idea of incorporating the concept of object orientation
into Petri nets. [51] provides an overview.

With activity diagrams, the currently dominant “UniversalModeling Language” (UML)
adopted some ideas of Petri nets. A more fundamental connection between Petri nets and UML
is described in [74].

23.5 Reference to Other System Models and Analysis Tech-
niques

Next to the usual automaton models, particularly finite automata with their graph representa-
tion, there are also some models that, like Petri nets, propose some elementary formalisms and
thus specify a class of systems. The formalisms of Petri netsare described in this book and
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summarized in Section 23.3.
Process algebras are noted for their inductive design and their focus on pairwise “handshake

synchronization” of actions. [9] tries to combine the advantages of both system models.
Abstract State Machines (ASM) pursue the idea of leaving theinterpretations of all data and

function symbols in an algorithm’s specification completely open. This results in a concept of
algorithms that is more general than usual [32]. The conceptof Petri net schemata in Chapter 22
is based on this idea.

For the analysis methods presented in Part II, the question of the complexity of their algorith-
mic solutions arises. This text addressed these issues onlyrarely. There are numerous studies
in the literature that sometimes bring up very fundamental questions of complexity theory. [22]
provides an overview.

23.6 Other Introductory Texts

The most recent comprehensive introduction to Petri nets was written by a team of authors after
theThird Advanced Course on Petri Netsin 1998 [70]. Compared to that text, this one is shorter
and focuses on fundamental terms, accurate analysis techniques and case studies. At the same
time, it contains a few new items:

• As far as possible, elementary and generic systems nets are not treated separately.

• State properties written as equations and inequalities areseparated from the question of how
to prove their correctness.

• Scenario-based runs and run properties are emphasized.

• Hot and cold transitions are distinguished.

• In some instances, new terminology is used.

In particular, the term “system net” is new for an initially marked net structure. The prefix
“elementary” denotes the special case of “black” tokens. The term “Petri net” is used to denote
the entire field of study. All this is meant to emphasize the advantages of Petri nets and to
intuitively, conceptually and terminologically simplifytheir comprehensibility.

The literature on Petri nets is vast and steadily growing. The online platformhttp://
www.informatik.uni-hamburg.de/TGI/GI-Fachgruppe0.0.1/ maintained by
the University of Hamburg, Germany is an excellent choice for an introduction.





Formal Framework Appendix

Here we present a concise compilation of the
formal framework that is used throughout this
book. For easy navigation and cross-reference,
the relevant terms are highlighted here and also
in the margin of each chapter.

Components of a Net (☞ Sect. 2.2)

Definition 1. Let P and T be sets and letF ⊆
(P × T ) ∪ (T × P ).

(i) N =def (P, T, F ) is a net structure .
P , T and F contain the places ,

transitions andarcs ofN , respectively.

(ii) For x ∈ P ∪ T , •x =def {y|yFx} is
the pre-set andx• =def {y|xFy} is the
post-set ofx.

(iii) x, y ∈ P ∪ T form a loop iff x ∈ •y and
y ∈ •x.

(iv) N is strongly connectediff aF+a for
eacha ∈ P ∪ T .

(v) N isacyclic iff aF+a for noa ∈ P ∪ T .

Definition 2. Let N = (P, T, F ) be a net
structure, letL be a set and letℓ : P ∪T → L.
Thenℓ is a labeling ofN (N is ℓ-labeled).

Multisets (☞ Sect. 2.3)

Definition 3.

(i) For a setU , a mappinga : U → N is a
multiset overU . M(U) denotes the set
of all multisets overU . We writeM for
M(U) if U is irrelevant or obvious from
context.

(ii) a ∈ M is finite iff a(u) 6= 0 for only
finitely manyu ∈ U .

(iii) [ ] ∈ M denotes theempty multiset ,
with [ ](u) = 0 for all u ∈ U .

(iv) For a, b ∈ M, the sum a + b ∈ M
of a and b is defined for eachu ∈ U by
(a+ b)(u) =def a(u) + b(u).

(v) For a, b ∈ M, a is smaller or equal tob,
writtena ≤ b, iff for eachu ∈ U , a(u) ≤
b(u). The relation≤ is a partial order
onM.

(vi) For a, b ∈ M with b ≤ a, the
subtractiona−b ∈ M of b froma is de-
fined for eachu ∈ U by (a − b)(u) =def

a(u)− b(u).

Notations A.1. A finite multiseta can be writ-
ten [a1, . . . , an], where for eachu ∈ U there
exista(u) indices1 ≤ i ≤ n with ai = u.
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Expressions (☞ Sect. 2.6)

As usual we assume constant and function
symbols together with a fixedinterpretation.
This includes a setU such that each con-
stant symbol is interpreted as an element ofU
and each function symbol as a function over
U . The symbols can be composed to form
(variable-free)expressions. The interpretation
of symbols yields canonically an interpretation
of each expression as an element ofU .

Two expressionsd ande may thus be inter-
preted as the same element ofU , in which case
d ande areequivalent, writtend ∼ e. As usual,
we frequently confuse symbols and variable-
free expressions with their interpretation.

Expressions may also includevariables.
With a setX including all variables occurring
in an expressione, a mappingβ : X → U
evaluatesX in U . This yields an interpretation
β(e) ∈ U : replace each occurrence of each
variablex in e by its evaluationβ(x). This re-
turns a variable-free expressionβ(e), which is
interpreted as described above.

An expression e is a condition if
β(e) ∈ {true, false} for each evaluation
β. For finite multisets,β generalizes to
β([e1, . . . , en]) =def [β(e1), . . . , β(en)].

Let exp denote the set of all expressions and
cond the set of all conditions as assumed in the
given context.

Markings, Modes, Steps (☞ Sects. 2.4–
2.6)

Definition 4.

(i) A mappingM : P → M is a marking of
N .

(ii) Two markingsM and M ′ are ordered
(written M ≤ M ′) iff M(p) ≤ M ′(p)
for eachp ∈ P .

Definition 5. Let N = (P, T, F ) be a net
structure, lett ∈ T .

(i) A condition t̂ ∈ cond is a
transition condition .

(ii) For p ∈ •t and q ∈ t•, setspt, tq ∈
M(exp) are arc labelings of t. For
technical reasons, with(a, b) /∈ F let
ab =def [ ].

(iii) Let X be the set of variables occurring in
given transition conditions and arc label-
ings oft. Then a mappingβ : X → U is
a mode oft . (t, β) is aneventof N .

(iv) Letβ be a mode oft. Then the markings
•[t, β] and [t, β]• are defined for each
p ∈ P by •[t, β](p) =def β(pt) and
[t, β]•(p) =def β(tp).

(v) Let t̂ be a condition, letβ be a mode
of t and let M be a marking. Then
M enablest in the modeβ (or M en-

ables the event(t, β)) iff β(t̂) = true and
•[t, β] ≤ M .

(vi) LetM enable(t, β), and letM ′ = M −
•[t, β] + [t, β]•. Then(M, t, β,M ′) is a
step oft in modeβ or a step of (t, β),

writtenM
(t,β)
−−→ M ′.

System Nets (☞ Sect. 2.7)

Definition 6. LetS = (P, T, F ) be a net struc-
ture, letU be a set, letM0 be a marking of
P over U , let τ : T → cond, let ℓ : F →
M(exp), letC ⊆ T .
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Then N =def (S,M0, ℓ, τ, C) is a
system net overU withM0, ℓ, τ andC its ini-
tial marking, arc labeling, transition condition
andset of cold transitions, respectively.

General Assumptions

In the following we generally assume a setU ,
called theuniverse, and a system netN =
(S,M0, ℓ, τ, C) over U , with S = (P, T, F ).
Furthermore, for eachp ∈ P , t ∈ T and
(a, b) ∈ F we assumeM0(p), τ(t) andℓ(ab)
to be finite.

(i) We usually write t̂ for τ(t) and ab for
ℓ(a, b).

(ii) A marking, a place, a transition and an
arc ofN is sloppy for a marking, a place,
a transition and an arc ofS.

(iii) A transition t is hot iff it is not cold.

Reachable Markings, Marking
Graph (☞ Sect. 2.8, 2.9)

Definition 7. The setR of reachable markings
of N is inductively defined by

(i) M0 ∈ R;

(ii) If M ∈ R andM
u
−→ M ′ is a step ofN ,

thenM ′ ∈ R.

Definition 8.

(i) A stepM
u
−→ M ′ is reachableiff M is

reachable.

(ii) A markingM ′ is reachable from a mark-
ingM iff there exists a sequenceMi−1

ti−→
Mi (i = 1, . . . , n) of steps withM0 = M
andMn = M ′.

Definition 9. Let V andL be sets, letv ∈ V
and letE ⊆ V × L × V . Then(V,E, v) is
a (directed, initialized, arc-labeled) graph. V
is the set ofverticesand (e1, ℓ, e2) ∈ E is an
ℓ-edge, with ℓ its label.

Definition 10. Let R and E be the sets of
reachable markings and steps, respectively,
of N . Then the graph(R,E,M0) is the
marking graph ofN , writtenmg(N).

Definition 11. A markingM of N is final iff
M enables only cold transitions.

Elementary System Nets (☞ Sects. 3.1,
3.5)

Definition 12. N is elementary iff

(i) {•} is the underlying universeU ,

(ii) t̂ = true for eacht ∈ T ,

(iii) ab = [•] for each arc(a, b) ∈ F .

Notations A.2. LetN be elementary.

(i) Each mappinga : {•} → N can be iden-
tified witha(•) ∈ N. Hence each mark-
ing M of N can be written asM : P →
N.

(ii) As arc labels are all alike, they are
skipped in graphical representations.
This likewise applies to transition condi-
tions.
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(iii) As no arc labeling contains a variable,

each stepM
t,β
−→ M ′ can be written as

M
t
−→ M ′.

Observation 1. For an elementary N ,
•[t, β](p) = [t, β]•(q) = [•] iff p ∈ •t and
q ∈ t•.

Definition 13. Let N be elementary. N is
1-bounded iff for each reachable markingM
and eachp ∈ P holds:M(p) ≤ 1.

Sequential Runs (☞ Sect. 4.1)

Definition 14.

(i) A finite sequence of stepsM0
u1−→ M1

u2−→
. . .

un−→Mn ofN is afinite sequential run
of N iff Mn is a final marking ofN .

(ii) An infinite sequence of stepsM0
u1−→

M1
u2−→ . . . of N is incompleteiff there

exists an indexn and a hot transitiont
such that for eachi ≥ n holds:Mi en-
ablest and•t ∩ •ui = ∅.

(iii) An infinite sequence of steps is aninfinite
sequential run ofN iff it is not incom-
plete.

Actions (☞ Sect. 4.3)

Definition 15. An action is a labeled netA =
(Q, {v}, G) with •v∩ v• = ∅ and•v∪ v• = Q.

Definition 16. LetQ be a set labeled by some
ℓ : Q → P × U . Then the markingMQ of
P is defined for eachp ∈ P by MQ(p) =
[u1, . . . , un] iff q1, . . . , qn are the elements of
Q with ℓ(qi) = (p, ui) for i = 1, . . . , n.

Definition 17. An ℓ-labeled actionA with
transitionv represents the event(t, β) of N iff
ℓ(v) = (t, β),M•v =

•[t, β] andMv• = [t, β]•.

Distributed Runs (☞ Sect. 4.4)

Definition 18. A net K = (Q, V,G) is a
causal net iff

(i) for eachq ∈ Q, | •q |≤ 1 and| q• |≤ 1;

(ii) The transitive closureG+ ofG is irreflex-
ive (i.e.,G+ is a strict partial order);

(iii) For eachx ∈ Q∪V , {y | yG+x} is finite.

Definition 19. LetK = (Q, V,G) be a causal
net.

(i) ◦K =def {q ∈ Q | •q = ∅},

(ii) K◦ =def {q ∈ Q | q• = ∅}.

Observation 2. If V = ∅ thenG = ∅ and
◦K = K◦ = Q.

Definition 20. An ℓ-labeled causal netK is a
distributed run ofN iff M◦K = M0 and each
action ofK represents an event ofN . K is
complete iff the markingMK◦ enables no hot
transition.

Definition 21. For a causal net K =
(Q, V,G), the relationG+ is the (strict, par-
tial) causal order onK.

Composition of Distributed Runs
(☞ Sect. 4.8)

Definition 22. For i = 1, 2 let Ki =
(Qi, Vi, Gi) be occurrence nets, labeled with
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ℓi. Let(Q1∪V1)∩ (Q2∪V2) = K◦

1 = ◦K2 and
for eachp ∈ K◦

1 let ℓ1(p) = ℓ2(p). Then the
occurrence netK =def (Q1∪Q2, V1∪V2, G1∪
G2) labeled withℓ, with ℓ(x) = ℓi(x) is the
composition ofK1 andK2, writtenK1 ◦K2.

Scenarios (☞ Sect. 5.1)

Definition 23. A distributed run K is a
scenario ofN iff M◦K = MK◦.

More generally:

Definition 24. A distributed run K is a
scenario for a markingM iff M ≤ M◦K and
M ≤ MK◦.

Definition 25. N is scenario based iff there
exists a finite setA of scenarios and a finite set
B of finite distributed runs such that

(i) each finite concurrent run ofN is
shapedS1 · · ·Sn with S1, Sn ∈ B and
S2, . . . , Sn−1 ∈ A,

(ii) each infinite concurrent run ofN is
shapedS1S2 · · · with S1 ∈ B and
S2, S3, . . . ∈ A.

Notice thatS1 andSn may be empty concur-
rent runs, i.e., including no transitions.

Place Capacities (☞ Sect. 6.1)

Definition 26. LetN be elementary, letM be
a marking ofN , and letn ∈ N.

(i) M is n-bounded iffM(p) ≤ n for all
p ∈ P .

(ii) The setR(n) of n-reachable markings of
N is inductively defined by

• M0 ∈ R(n) if M0 is n-bounded;

• If M ∈ R(n), M
t
−→ M ′ is a

step andM ′ is n-bounded, then
M ′ ∈ R(n).

Observation 3. There may exist reachablen-
bounded markings that are notn-reachable.

Definition 27.

(i) Let p ∈ P and assumeM0(p) ≤ n. Let
p̃ be a fresh place with•p̃ = p•, p̃• = •p
andM0(p̃) = n − M0(p). Thenp̃ is the
n-complement ofp.

(ii) AssumeM0 is n-bounded. ThenN (n)

is defined asN , extended by then-
complement̃p for each placep.

Lemma 1. Let n ∈ N such thatM0 is n-
bounded. LetR′ be the set of reachable mark-
ings of N (n). Then there exists a bijection
f : R(n) → R′ such that for allM,M ′ ∈ R(n)

holds: M
t
−→ M ′ is a step onN iff f(M)

t
−→

f(M ′) is a step ofN (n).

Arc Weights (☞ Sect. 6.2)

Definition 28. Let N be elementary, letw :
(P × T ) ∪ (T × P ) → N be a mapping with
w(a, b) = 0 if (a, b) /∈ F and letM,M ′ be
markings ofN .

(i) (N,w) is the w-generalization ofN .

(ii) M
t
−→ M ′ is a w-step iff for eachp ∈ P

w(p, t) ≤ M(p) andM ′(p) = M(p) −
w(p, t) + w(t, p).
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Definition 29. LetN ′ be an elementary system
net. A finite sequential runr = M0

t1−→ M1
t2−→

· · ·
tn−→ Mn of N is an N -reduction of a finite

sequential runr′ = M ′

0

t
1′−→ M ′

1

t
2′−→ · · ·

t′
n′

−→
M ′

n′ ofN ′ iff t1, . . . , tk is obtained by eliminat-
ing from t′1, . . . , t

′

k′ all transitions that are not
in T .

Lemma 2. Let (N,w) be aw-generalization
of N . Then there exists an elementary system
netN ′ such that theN -reductions ofN ′ coin-
cide with the finite sequential runs ofN .

Regions (☞ Sect. 7.3)

Definition 30. LetZ = (V,E, v) be a graph,

letR ⊆ V , letπ =def h
ℓ
−→ k ∈ E.

(i) R receivesπ iff h /∈ R and k ∈ R. R
dispatchesπ iff h ∈ R and k /∈ R. R
containsπ iff h, k ∈ R.

(ii) R is a region ofZ iff for each edge la-
bel ℓ: R receives either each or noℓ-
edge, andR dispatches either each or no
ℓ-edge.

(iii) A region R is minimal iff no proper
nonempty subset ofR is a region. Let
mreg(Z) denote the set of minimal re-
gions ofZ.

Definition 31. LetZ = (V,E, v) be a graph,
letL be the set of labels occurring at the edges
of Z. Thensn(Z) =def (mreg(Z), L, F,M0)

is the (elementary) system net ofZ , where

(i) (ℓ, R) ∈ F iff R receives orR contains
eachℓ-edge,

(ii) (R, ℓ) ∈ F iff R dispatches orR contains
eachℓ-edge,

(iii) M0(R) = 1 if v ∈ R andM0(R) = 0 if
v /∈ R.

Theorem 1 (Synthesis Theorem). If the syn-
thesis problem of a state automatonZ can be
solved by a1-bounded elementary system net,
then the system net ofZ is a solution.

Nets with Interfaces, Communicat-
ing Nets (☞ Sects. 8.1, 8.2)

Definition 32.

(i) Let I ⊆ P ∪ T . Then (S, I) is an
interface net . I is the interface of
(S, I).

(ii) A setM of interface nets isassociative
iff no element appears in the interfaces of
three or more of the nets inM .

Definition 33. For i = 1, 2 letNi = (Si, Ii) be
two interface nets such thatSi = (Pi, Ti, Fi)
and(P1 ∪ T1) ∩ (P2 ∪ T2) ⊆ I1 ∩ I2.

(i) The interface netN1 ⊕ N2 =def ((P1 ∪
P2, T1∪T2, F1∪F2), (I1∪I2)\ (I1∩I2))
is the composition ofN1 andN2.

(ii) N1 and N2 communicate iff for each
x ∈ I1 ∩ I2 holds:

• x ∈ P1 ∩ P2,

• either •x ⊆ T1 and x• ⊆ T2, or
•x ⊆ T2 andx• ⊆ T1.

Theorem 2 (Composition Theorem for Inter-
face Nets). For i = 1, 2, 3, let Ni be interface
nets with the interfacesIi.
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(a) N1 ⊕N2 = N2 ⊕N1.

(b) If I1∩ I2∩ I3 = ∅, then(N1⊕N2)⊕N3 =
N1 ⊕ (N2 ⊕N3).

Decomposition into Open Subnets
(☞ Sect. 8.3)

Definition 34. Let P ′ ⊆ P , T ′ ⊆ T , F ′ =
F ∩ (P ′ × T ′) andS ′ = (P ′, T ′, F ′). Further-
more, letI ⊆ P ′ such that for eachp ∈ I
•p ∪ •p′ ⊆ T ′. ThenN ′ = (S ′, I) is an
open subnet ofS. N is minimal iff there ex-
ists no open subnetS ′′ = (P ′′, T ′′, F ′′) with
S ′′ 6= S ′, P ′′ ⊆ P ′, T ′′ ⊆ T ′ andF ′′ ⊆ F ′.

Theorem 3 (Associativity Theorem). Let M
be a set of pairwise communicating interface
nets. ThenM is associative.

Equations and Inequalities (☞ Sects. 9.2,
9.4, 9.7)

Definition 35. Let A be a set, leta ∈ A,
let + : A × A → A be an operation, let
p1, . . . , pk ∈ P , and letf1, . . . , fk : M → A.

(i) G : f1(p1) + · · · + fk(pk) = a is an
equation overN .

(ii) For a marking M of N , an equation
G holds in M (written M |= G) iff
f1(M(p1)) + · · ·+ fk(M(pk)) = a.

(iii) G holds inN (G is valid in N , written
N |= G) iff M |= G for each reachable
markingM ofN .

(iv) Replacing in (i) and (ii) the equality “=”
with “≤” or “ ≥” yields inequalities.

(v) For each placep ∈ P , p ≥ [ ] is the
canonical inequality ofp.

Lemma 3. Each canonical inequality of a
placep of N holds inN .

Definition 36. An equation or inequality over
N is astate propertyof N .

Theorem 5 (Validity Theorem for Proposi-
tional Properties). For a system netN and
propositional propertiesα and β, the follow-
ing hold:

a) N |= α ∧ β iff N |= α andN |= β.

b) If not N |= α, then not necessarilyN |=
¬ α.

c) If N |= α or N |= β, thenN |= α ∨ β.

d) If N |= α, thenN |= β → α.

e) IfN |= ¬α, thenN |= α → β.

Traps and Cotraps of Elementary
System Nets (☞ Sects. 10.1–10.3)

Definition 37. LetQ ⊆ P .

(i) •Q =def

⋃
q∈Q

•q andQ• =def

⋃
q∈Q q•.

(ii) Q is a trap ofN iff •Q ⊆ Q•.

(iii) Q is a cotrap ofN iff Q• ⊆ •Q.

(iv) Q is initially marked iff for at least one
q ∈ Q, M0(q) ≥ [ ].

(v) N has the trap/cotrap property iff to
each cotrapR there exists an initially
marked trapQ ⊆ R.
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Theorem 6 (Trap Theorem). Let N be an el-
ementary system net with an initially marked
trap Q = {q1, . . . , qr}. Then the following in-
equality holds inN :

q1 + . . .+ qr ≥ 1. (1)

Theorem 7 (Cotrap Theorem). Let N be an
elementary system net with an initially un-
marked cotrapQ = {q1, . . . , qr}. Then the
following equation holds inN :

q1 + . . .+ qr = 0. (2)

Theorem 8 (Theorem on Marked Cotraps).
LetN be an elementary system net and letM
be a marking ofN that marks each cotrap of
N . ThenM enables at least one transition.

Theorem 9 (Trap/Cotrap Theorem). Let N
be an elementary system net that has the
trap/cotrap property. Then each reachable
markingM of N enables at least one transi-
tion.

Vector and Matrix Representations
for Markings, Transitions and Ele-
mentary System Nets (☞ Sects. 11.1,
11.2)

Definition 38. W.l.o.g. letP = {p1, . . . , pk}
and T = {t1, . . . , tℓ}. For i = 1, . . . , k and
j = 1, . . . , ℓ let

zij =def





−1, if pi ∈ •tj andpi /∈ t•j
+1, if pi ∈ t•j and /∈ •tj

0, otherwise.

Then M =



M(p1)

...
M(pk)


, ti =



zi1
...
zik




and N =



z11 · · · zℓ1
...

...
z1k · · · zℓk


 are the

vector representations ofM andt , and the

matrix representation ofN , respectively.

Lemma 4. With component-wise addition and
comparison of vectors holds:M enablest iff
t ≤ M , andM

t
−→ M ′ is a step iffM enables

t andM ′ = M + t.

Place Invariants and Equations of
Place Invariants of Elementary Sys-
tem Nets (☞ Sects. 11.3, 11.4)

Definition 39. Let ~0 = (0, . . . , 0) be ℓ-
dimensional and letn = (n1, . . . , nk) be an
integer solution ofx ·N = ~0.

(i) n is a place invariant ofN .

(ii) n0 =def n ·M0 is the constant ofn .

(iii) n1 · p1 + · · · + nk · pk = n0 is the
equation ofn .

(iv) n is positiveiff n1, . . . , nk ∈ N.

(v) Thecarrierof n is the set of all placespi
with ni > 0.

Theorem 10 (Elementary Place Invariants
Theorem). LetN be an elementary system net
with a place invariantn. Then the equation of
n holds inN .

Theorem 11(Converted Place Invariants The-
orem). Let N be an elementary system net
such that for each transitiont there exists a
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reachable markingM that enablest. Fur-
thermore, let equation (2) hold inN . Then
n = (n1, . . . , nk) is a place invariant ofN with
the constantn0.

Theorem 12 (Positive Place Invariants Theo-
rem). A placep with a positive place invariant
is bounded.

Theorem 13 (Invariant Trap/Invariant Cotrap
Theorem). The carrier of a positive place in-
variant of a system netN is also a trap and a
cotrap ofN .

Calculating with Equations and In-
equalities (☞ Sects. 12.1, 12.4)

Definition 40. LetG1 : n1 ·p1+ · · ·+nk ·pk =
n0 andG2 : m1 · p1 + · · · +mk · pk = m0 be
equations and letz ∈ Z. Then

(i) G1 + G2 =def (n1 + m1) · p1 + · · · +
(nk + mk) · pk = n0 + m0 is the
sum ofG1 andG2 ,

(ii) z·G1 =def z·n1·p1+· · ·+z·nk·pk = z·n0

is the scalar product ofG1 with z .

Theorem 14 (Addition Theorem of Valid
Equations and Inequalities). LetN be an ele-
mentary system net. The sum of two equations
or inequalities that hold inN , as well as the
product of such an equation or inequality with
a factorz, again hold inN .

Definition 41. A state propertyG is stable iff

for each stepM
t
−→ M ′ ofN holds: IfG holds

in M thenG holds inM ′.

Traps of a System Net (☞ Sect. 13.1)

Definition 42. For a finite multisetA =
[a1, . . . , ak] let |A| =def k. Let Q =
{q1, . . . , qk} be a trap ofN . Then|q1| + · · · +
|qk| ≥ 1 is the inequality ofQ .

Sum Expressions (☞ Sects. 13.2,
13.3)

Definition 43. An expressione is unary if at
most one variable occurs ine. (This variable
may occur several times).

Definition 44. The setSE of sum expressions
is inductively defined:

(i) 0 ∈ SE,

(ii) For e1, e2 ∈ SE, also(e1 + e2) ∈ SE and
−e1 ∈ SE,

(iii) If f(b1, . . . , bn) is an expression and
e1, . . . , en ∈ SE, then f(e1, . . . , en) ∈
SE,

(iv) If e1 is unary thene1 · e2 ∈ SE.

Notations A.3. A multiset[a1, . . . , an] is rep-
resented by the expressiona1 + · · · + an. The
empty multiset[ ] is represented by0.

Product and Equivalence of Sum
Expressions (☞ Sect. 13.3)

Definition 45. Let e1 and e2 be two sum ex-
pressions, lete1 be unary with variablex.
Then the product ofe1 with e2 is defined as
e1 · e2 =def e1[x \ e2] (i.e., each occurrence
of x in e1 is replaced bye2).
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Definition 46. The sum expression equiv-
alence ∼ is defined for sum expressions
e1, e2, e3 and function symbolsf as

• e1 + e2 ∼ e2 + e1,

• (e1 + e2) + e3 ∼ e1 + (e2 + e3),

• e1 + 0 ∼ e1,

• e1 + (−e1) ∼ 0,

• f(. . . , e1 + e2, . . .) ∼ f(. . . , e1, . . .) +
f(. . . , e2, . . .),

• f(. . . ,−e1, . . .) ∼ −f(. . . , e1, . . .),

• f(. . . , 0, . . .) ∼ 0.

Definition 47. The calculation rulesfor sum
expressions are given by the above sum expres-
sion equivalence together with the equivalence
as described in Sect. 2.6.

Matrix and Place Invariants for
Generic System Nets (☞ Sects. 13.5–
13.8)

Definition 48. As in Sect. 11.1, w.l.o.g let
P = {p1, . . . , pk} andT = {t1, . . . , tℓ}. With
zij =def tjpi − tipj, let ti andN as in Sect.
11.1 and 11.2. ThenN is the matrix ofN .

Definition 49. Let b1, . . . , bk be unary sum ex-
pressions such that forj = 1, . . . , k holds:
b1 ·N(1, j)+ · · ·+ bk ·N(k, j) can be reduced
to 0 by means of the calculation rules. Then
b =def (b1, . . . , bk) is a place invariant ofN .

Definition 50. Let b = (b1, . . . , bk) be a place
invariant ofN .

(i) W.l.o.g for each placep assumeM0(p)
be represented as a sum expression. Then
the sum expressionb0 =def b1(M0(p1))+

· · ·+ bk(M0(pk)) is the constant ofb .

(ii) The equationb1(p1) + · · · + bk(pk) = b0
is the equation ofb .

Theorem 15 (Generic Place Invariant Theo-
rem). Let N be a system net and letb be a
place invariant ofN . Then the equation ofb
holds inN .

Covering Graph (☞ Sects. 14.4,
14.8)

Definition 51. Let c : P → N ∪ {ω} be a
mapping.

(i) c representsa markingM of N iff for all
p ∈ P with c(p) ∈ N holds: M(p) =
c(p).

(ii) c coversN iff c is reachable or rep-
resents infinitely many reachable mark-
ings K0, K1, . . . such that for all i =
0, 1, 2, . . . and allp with c(p) = ω holds:
Mi(p) ≥ i.

Definition 52. Let G be a finite, initial, di-
rected, arc labeled graph with initial ver-
tex M0 and markings that coverN as ver-
tices, such that there exists a sequential run
M0

t1−→ M1
t2−→ . . . of N iff there exists a

pathn0
t1−→ n1

t2−→ . . . of G such thatni rep-
resentsMi for i = 1, 2, . . . . Then,G is a
covering graph ofN .

Theorem 19(Theorem on Dead Transitions).
Let H be a covering graph of an elementary
system netN . A transition t is dead inN if
and only ifH does not have at-labeled edge.
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Marking Equation, Transition In-
variants (☞ Sects. 15.1–15.3)

Theorem 20 (Finiteness Theorem of Positive
Place Invariants). If each place of an elemen-
tary system netN has a positive place invari-
ant, then only a finite number of markings is
reachable inN .

Definition 53. For two markingsM,M ′ of
N , the marking equation ofM andM ′ is the
equationM ′ = M +N · x.

Definition 54. Let σ = M1
u2−→ M2

u3−→
· · ·

un−→ Mn be a finite sequence of steps

Mi−1
ti−→ Mi. For each transitiontj let aj =def

|{i | ui = tj}|. Thena = (a1, . . . , aℓ) is the
counting vector ofσ .

Theorem 21(Theorem on the Marking Equa-
tion). LetN be an elementary system net with
a step sequenceσ from a markingM to a
markingM ′. The counting vector ofσ solves
the marking equation forM andM ′.

Theorem 22(Viability Theorem). LetN be an
elementary system net with markingsM and
M ′ and a solutiona to the marking equation
(3). Then there exists a markingL of N and a
step sequenceσ fromM + L to M ′ + L such
thata is the counting vector ofσ.

Theorem 23(Acyclic Viability Theorem). Let
N be an acyclic elementary system net with
markingsM andM ′ and leta be a solution to
the marking equation forM andM ′. Thena
is the counting vector of a step sequence from
M to M ′.

Definition 55. Each solution(m1, . . . ,mk) of
N · x = ~0 with m1, . . . ,mk ∈ N is a
transition invariant ofN .

Theorem 24(Transition Invariants Theorem).
Let a be a transition invariant of an elemen-
tary system netN and letσ be a step sequence
from a markingM to a markingM ′ such that
a is the counting vector ofσ. ThenM andM ′

are identical.

Theorem 25(Reproducibility Theorem). If an
elementary system netN does not have any
transition invariants, then no marking is again
reachable from itself.

Run Properties (☞ Sects. 16.1, 16.3)

Definition 56. Lete andf be state properties.
Then the formulae 7→ f is a run property .

Definition 57. A run property e 7→ f
holds inN (writtenN |= e 7→ f ) iff for each

(finite or infinite) sequential runw = M0
t1−→

M1
t2−→ · · · holds: To eachi withMi |= e there

exists aj ≥ i with Mj |= f .

Definition 58. For Q ⊆ P and t ∈ T , let
eff(Q, t) =def (Q \ •t) ∪ t•.

Theorem 26(Theorem on Deduced Run Prop-
erties). LetN be an elementary system net and
let Q be a subset of its places such thatQ en-
ables at least one hot transition ofN . LetT =
{t1, . . . , tn} ⊆ Q• such thatN |= Q → ¬•t
for eacht ∈ Q•\T . Then

N |= Q 7→ eff (Q, t1) ∨ . . . ∨ eff (Q, tn).

Lemma 5. Let e, f, g be state properties.

(i) If N |= e 7→ f andN |= f 7→ g then
N |= e 7→ g.

(ii) If N |= e 7→ f andN |= g 7→ f then
N |= (e ∨ g) 7→ f .
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(iii) If N |= e 7→ (f ∧ g) thenN |= e 7→ f
andN |= e 7→ g.

(iv) If N |= e → f thenN |= e 7→ f .

Free-Choice Nets (☞ Sects. 17.1–
17.4)

Definition 59. N is free-choice iff for each
p ∈ P and eacht ∈ T with (p, t) ∈ F holds:
p• = {t} or •t = {p}.

Theorem 27(Trap/Cotrap Theorem for Free–
Choice Nets). LetN be a free-choice net. Then
N is live if and only ifN has the trap/cotrap
property.

Definition 60.

(i) Let p ∈ P , p• = {t1, . . . , tn} and •t1 =
· · · = •tn = {p}. Then{p, t1, . . . , tn} is
a fc-cluster .

(ii) Let t ∈ T , •t = {p1, . . . , pn} and p•1 =
· · · = p•n = {t}. Then{t, p1, . . . , pn} is a
ds-cluster .

Theorem 28 (Cluster Theorem for Free–
Choice Nets). An elementary system netN is
a free-choice net if and only if each place and
each transition ofN lies in exactly one cluster
of N .

Theorem 29(Rank Theorem for Free-Choice
Nets). For a connected free-choice netN ,
there exists an initial marking with whichN
is live and bounded if and only if

a) N has a positive place invarianti, whose
carrier contains each place ofN

b) N has a transition invariantj whose car-
rier contains each transition ofN

c) If the rank ofN is k, thenN has exactly
k + 1 clusters.

Marked Graphs (☞ Sects. 18.1, 18.2)

Definition 61.

(i) N is a marked graph iffN is elementary
and for eachp ∈ P holds: |•p| = |p•| =
1.

(ii) {p1, . . . , pn} ⊆ P is a cycle iff for
i = 1, . . . , n holds: p•i−1 = •pi, with
p0 =def pn.

Theorem 30 (Cycle Theorem for Marked
Graphs). Let N be a marked graph and let
p1 . . . pn be a cycle ofN , initially holding a
total of k tokens. Then the following equation
holds inN :

p1 + . . .+ pn = k.

Theorem 31 (Liveness Theorem for Marked
Graphs). A marked graphN is live if and only
if each cycle ofN contains at least one initially
marked place.

Theorem 32(Theorem on Live and 1-bounded
Marked Graphs). A live marked graphN is 1-
bounded if and only if each place ofN is part
of a cycle that initially contains exactly one to-
ken.

Theorem 33(Theorem on Initial Markings of
Marked Graphs). For each strongly connected
marked graphN there exists an initial mark-
ing such thatN is both live and 1-bounded.
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Well-Formed Elementary System
Nets (☞ Sects. 19.2, 19.3)

Definition 62. LetN be elementary and letE
be a reachable marking (calledfinal). Then
(N,E) is well-formed iff

(i) For no markingL 6= ~0, E + L is reach-
able,

(ii) Each transition ofN is enabled in at least
one reachable marking,

(iii) E is reachable from each reachable
marking ofN .

Theorem 34(Well-formedness Theorem). An
elementary system netN with a final marking
E is well-formed if and only ifN∗ is live and
bounded.

Fairness Assumptions (☞ Sect. 20.3)

Definition 63. Let N be elementary, letw =

M0
t1−→ M1

t2−→ . . . be an infinite sequential

run and lett ∈ T . Thenw neglects fairnessfor
t iff infinitely many markingsMi enablet, but
t = tj for only finitely many indicesj. The run
w respectsfairness fort iff w does not neglect
fairness fort.

Net Schemata (☞ Sect. 22.2)

In contrast to Sect. 2.6, here we assume no
fixed interpretation of the symbols in expres-
sions. Rather, anet schema coversall inter-
pretations. This requires a symbolic represen-
tation of markings. To this end, a markingM
assigns each placep a setM(p) of variable free
expressions.M(p) is frequently represented
as a constant symbol, to be interpreted as a
finite multiset. In a net schema, different ex-
pressions are never equivalent in the sense of
Sect. 2.6. The only equivalences to calculate
with are those for multiset expressions, as in
Sect. 13.3.
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