
Semantic Embedding of Petri Nets into Event-B

J. Christian Attiogbé

LINA - UMR CNRS 6241
2, rue de la Houssinière, B.P.92208, F-44322 Nantes Cedex 3, France

Christian.Attiogbe@univ-nantes.fr

Abstract. We present an embedding of Petri nets into B abstract systems. The
embedding is achieved by translating both the static structure (modelling aspect)
and the evolution semantics of Petri nets. The static structure of a Petri netis cap-
tured within a B abstract system through a graph structure. This abstractsystem
is then included in another abstract system which captures the evolution seman-
tics of Petri nets. The evolution semantics results in some B events depending
on the chosen policies: either basic nets or high level Petri nets. The current em-
bedding enables one to use conjointly Petri nets and Event-B in the same system
development, but at different steps and for various analysis.

Keywords: B System, Petri Nets, Embedding Techniques, Method and ToolIntegration

1 Introduction

Reliable system development requires the use of concepts, languages, tools and meth-
ods which are provided by formal approaches. Several methods exist but are mono-
paradigms. However, real size systems often overwhelm the scope covered by mono-
paradigm specification techniques and their complexity requires an adequate integration
of appropriate techniques and methods for both the development and the formal analy-
sis. Current research efforts focus on the combination of various approaches and their
specific tools in order to strengthen their impact on industrial system treatment. There-
fore, there are some requirements to make formal methods more practical and efficient
in their usage:i) they should be linked withengineering practicesand techniques;ii)
their mechanizationby providing powerful andoperational development tools. These
points are still challenges for the formal method communityand therefore they motivate
our work.

The integration of various formal methods may be motivated by different kind of
combinations: the complementarity of methods so as to coverthe facets of the appli-
cation at hand, the need of specific techniques such as composition and refinement, or
specific reasoning techniques such as theorem proving and model checking, or some
pragmatic considerations such as the pragmatical aspect ofgraphical formalisms and
the interoperability of tool supports.

In the current work we study the integration of Petri nets andB in order to use con-
jointly both approaches in the same development. The motivation is to benefit from the
complementarity of both approaches. Petri nets formalism may be used as a graphical

2

front-end of a B development project. The B framework may follow to complement
formal analysis of the system modelled using Petri nets. On the one hand, Petri nets
formalism are widely used [17,19,18,14] by engineers and also in academic or research
projects. Petri nets also have graphical facilities, simulation and liveness property ver-
ification facilities via powerful model checking techniques. On the other hand, B is a
model-based approach which permits correct development with refinement from ab-
stract specifications to executable codes; it is based on theorem proving technique and
it offers (mainly) safety properties verification facilities.

The contribution of this article resides ini) the definition of a (B) generic structure
to capture Petri nets models and semantics;ii) the means to systematically embed Petri
nets structure and their evolution rules into Event-B. Thisleads to the development of
a bridge between Petri nets and B.

The article is organised as follows: in Section 2 we introduce the Petri nets for-
malism and the B Systems approach. Section 3 is devoted to thestepwise embedding
of Petri nets into B: basic nets are first considered and then generalized to high level
nets. Section 4 gives some issues related to analysis and in Section 5 we give some
concluding remarks.

2 Petri Nets and B Systems

2.1 An Overview of Petri Nets (P-nets)

Formally, a P-net is a 4-tuple(P , T , Pre, Post) where :

– P is a finite set of places , (with| P |= m, the cardinal ofP);
– T is a finite set of transitions, (with| T |= n, the cardinal ofT);
– P andT are disjoint sets (P ∩ T = {});
– Pre : P × T → N is an input function,Pre(p, t) denotes the number of arcs

from the placep to the transitiont ;
– Post : P × T → N is an output function,Post(p, t) denotes the number of arcs

from the transitiont to the placep.

Practically, a P-net is a bipartite directed graph whose arcs connect nodes from two
distinct sets; the set of places and the set of transitions. Petri nets are equipped with a
graphical formalism where the places are connected to the transitions using the directed
arcs.

Graph associated to a P-net.The graph associated to a netN is described by:

– Γp the transitions reachable from each place:
∀ p ∈ P . Γp(p) = {t ∈ T | Pre(p, t) > 0}

– Γt the places reachable from each transition:
∀ t ∈ T . Γt(t) = {p ∈ P | Post(p, t) > 0}

– Win the weight of each input arc:∀ p ∈ P , ∀ t ∈ T .Win(p, t) = Pre(p, t)
and

– Wout the weight of each output arc:∀ p ∈ P , ∀ t ∈ T .Wout(p, t) = Post(p, t)

3

The graph associated to a P-net is the abstract representation which is used to manip-
ulate the net. The places connected to a transition with an arc from each place to the
transition are theinput placesof the transition. The places connected to a transition with
an arc from the transition to each place are theoutput placesof the transition.

P-net marking.A marked netMN = (N , µ) is made of a netN and a mapping
µ : P → N.
µ(p) is the number of tokens withinp; it is called themarkingof the placep. The initial
markingM0 of a net is the n-tuple made of the initial marking of all the placespi of the
net:M0 = (µ(p1), · · · , µ(pm)) wherem is the number of places.

Behaviour of a P-net.A P-net evolves by firing someenabledtransitions. A transition
is enabledif all its input places contain at least so many tokens as is the weight of the
arcs from the place to the transition. An enabled transitionmay be fired and enable all
the actions in the output places of the transition. There is anon-deterministic choice
between the enabled transitions. Firing a transition modifies the markings of both input
and output places. This may enable or disable other transitions. All enabled transitions
may be fired. Therefore the evolution of the net describes amarking netwhich can
be infinite. When a transition is fired, one token is removed from every input place
of the transition and one token is added to every output placeof the transitions. This
is generalized by removing (resp. adding) the number of tokens corresponding to the
weight of the arcs from the input place to the transition (resp. to the weight of the arcs
from the transition to the output place).

2.2 An Overview of B Abstract Systems

An abstract system[1,3] describes a mathematical model of a system behaviour1. It is
mainly made of a state description (constants, variables and invariant) and severalevent
descriptions. Whileabstract machinesare the basic structures of the earlier operation-
driven approach of the B method,abstract systemsare the basic structures of the so-
calledevent-drivenB, and replace abstract machines. Abstract systems are comparable
to Action Systems [4]; they describe a nondeterministic evolution of a system through
guarded actions. Dynamic constraints can be expressed within abstract systems to spec-
ify various liveness properties [3,8]. The state of an abstract system is described by
variables and constants linked by an invariant. Variables and constants represent the
data space of the system being formalized. Abstract systemsmay be refined like ab-
stract machines [8,2].

Data of an Abstract System At a higher level an abstract system models and contains
the data of an entire model, be it distributed or not. Abstract systems have been used
to formalize the behaviour of various (including distributed) systems [1,7,8,2]. Con-
sidering a global vision, the data that are formalized within the abstract system may
correspond to all the elements of the distributed system.

1 A system behaviour is the set of its possible transitions from state to state beginning from an
initial state.

4

Events of an Abstract SystemWithin B, an event is considered (like in the approach
of Action Systems) as the observation of a system transition. Events are spontaneous
and show the way a system evolves. An event has aguardand anaction. It may occur
or may be observed only when its guard holds. The action of an event describes with
generalized substitutions how the system state evolves when this event occurs. Several
events can have their guards held simultaneously; in this case, only one of them occurs.
The system makes internally a nondeterministic choice. If no guard is true the abstract
system is blocking (deadlock). An event has one of the general forms (Fig. 1) where

name b= /* event name */
SELECT

P(gcv)

THEN

GS(gcv)

END

(SELECT Form)

name b= /* event name */
ANY bv WHERE

P(bv,gcv)

THEN

GS(bv,gcv)

END

(ANY Form)

Fig. 1.General Forms of Events

gcv denotes the global constants and variables of the abstract system containing the
event;bv denotes the bound variables (variables bound toANY). P(bv ,gcv) denotes a
predicateP expressed with the variablesbv andgcv ; in the same wayGS(bv ,gcv) is a
generalized substitutionS which models the event action using the variablesbv and
gcv . The SELECT form is just a particular case of theANY form. The guard of an
event with theSELECT form is P(gcv). The guard of an event with theANY form is
∃(bv).P(bv ,gcv).

Semantics and Consistency.An abstract system describes a mathematical model that
simulates the behaviour of a system. Its semantics is based on the invariant and is guar-
anteed by proof obligations (POs). Theconsistencyof the model is established by such
proof obligations:i) the initialisation should establish the invariant; ii) each event of
the given abstract system should preserve the invariant of the model(one must prove
these POs). The proof obligation of an event with theANY form is:

I(gcv) ∧ P(bv ,gcv) ∧ term(GS(bv ,gcv)) ⇒ [GS(bv ,gcv)]I(gcv)

whereI(gcv) stands for the invariant of the abstract system. The predicate term(S)
expresses that the substitutionS terminates.

3 Embedding Petri Nets into Event-B

3.1 Embedding techniques

Embedding techniques are introduced in [5] and provide a methodology to reuse exist-
ing logical frameworks for formal analysis. Embedding techniques are intensively used

5

for method integration and mechanization of notations [6,10,16]. There are two main
embedding techniques:shallow embeddingandsemantic embedding(also calleddeep
embedding). The first technique deals with the translation of specifications (objects of a
formalism) to semantically equivalent objects in the target formalism. Nevertheless, the
mapping from the language constructs to their semantic representations is part of the
metalanguage (support of the source language). In the case of semantic embedding, the
complete semantics of a source formalism is translated intothe target formalism: both
syntax and semantics of the source language are formalized inside the target language
logic. That means, the mapping from language constructs to their semantic represen-
tations is part of the target language logic. Consequently,using semantic embedding,
we do not need only the (semantic preserving) syntactic translation of the constructs
but also the semantics to be translated into the target logic. The choice of one of the
techniques depends on the envisaged goal.

3.2 Embedding the Structure of Petri Nets within B

Embedding the structure of a P-net into B (Fig. 2) consists indescribing the graph
associated to the P-net. The 4-tuple which describes a netN is encoded with the set
of places (places), the set of transitions (transitions), and the two relations between
places and transitions (placesBefore, placesAfter). Additionally we have the marking
functions for the places:mu. We also consider the weights of the arcs; they are natural
number greater or equal to the unit. The input arc weights aredescribed by the func-
tion weightBefore. The output arc weights are described by the functionweightAfter .
Therefore some invariant properties may be added. This results in an event-less B ab-
stract system (Fig. 2) which captures only the graph structure of a marked net(N ,mu).
It remains to deal with the behavioural semantics of the net.This is based on the mark-
ing of the net and its transitions.

3.3 Embedding Petri Nets Evolution Semantics into B

A P-net evolves by firing the enabled transitions. From a given marking, firing one of
the enabled transitions, leads to a new marking of the net andso on. This is embedded
in event-B by an abstract system whose events correspond to the transition firing.

A P-net transition may be formalized (at first approximation) as a B event (see
Fig. 3) with a guard which expresses that all the input placesof the transition have the
required number of tokens and a body (a generalized substitution) which expresses the
update of input places (by removing the necessary tokens) and the update of output
places (by adding the appropriate number of tokens). B events are instantaneous and
their effect can cause the occurrence of other events. This copes well with the semantics
of P-net: the firing of a transitionti is instantaneous and thus can lead to the firing of
other transitions which have the output places ofti among their input places.

Basic Petri net HerebasicPetri net means that actions (data+operations) are not at-
tached to the places nor to the transitions. The arc weight may be greater or equal to the
unit. The guard for firing a transitionti is that all its input placespp have the required

6

SYSTEM PetriNet
SETS

PLACE; TRANSITION
VARIABLES

places, transitions, placesBefore, placesAfter ,weightBefore,weightAfter ,mu

INVARIANT

places ⊆ PLACE
∧ transitions ⊆ TRANSITION
∧ placesBefore ∈ transitions ↔ places /* placesBefore−1 = Γp */
∧ placesAfter ∈ transitions ↔ places /* placesAfter = Γt */
∧ placesBefore = dom(weightBefore)
∧ placesAfter = dom(weightAfter)
∧ weightBefore ∈ transitions × places 7→ N

∧ dom(weightBefore) = placesBefore

∧ weightAfter ∈ transitions × places 7→ N

∧ dom(weightAfter) = placesAfter

∧ mu : places → N

Fig. 2. A Partial B system encoding a P-net

number of tokens:

ti ∈ transitions ∧
∀ pp.(pp ∈ placesBefore[{ti}]) ⇒ µ(pp) > weightBefore(ti , pp)

The basic effect of firing a transition is the update, via theµ function, of the input and
output places according to the input and output arcs. Letpbef = placesBefore[{ti}] be
the inout places ofti andpaft = placesAfter [{ti}] the output places ofti . The update
of the places after the transitions is:

µ := µ <+{pp, vv | pp ∈ pbef ∧ vv = mu(pp) − weightBefore(ti , pp)}
<+{pp, uu | pp ∈ paft ∧ uu = mu(pp) + weightAfter(ti , pp)}

Note that in the P-nets some places may be both input place andoutput place; those
place need a cumulative update. Therefore we have a more general update performed
as follows; letpbef = placesBefore[{ti}] − placesAfter [{ti}] be the places at input
only,
paft = placesAfter [{ti}] − placesBefore[{ti}] be the places at output only and
pcom = placesBefore[{ti}] ∩ placesAfter [{ti}] the places being in input and output.

The update ofµ is rigorously captured by:

µ := µ <+{pp, vv | pp ∈ pbef ∧ vv = mu(pp) − weightBefore(ti , pp)}
<+{pp, uu | pp ∈ paft ∧ uu = mu(pp) + weightAfter(ti , pp)}
<+{pp,mm | pp ∈ pcom ∧ mm = mu(pp) − weightBefore(ti , pp)

+weightAfter(ti , pp)}

7

Therefrom, the firing of a transitionti is translated with a single B eventevent tr
(Fig. 3) which works for every transitionti in a non-deterministic way. The variables
mupbef andmupaft model with B generalized substitutions the update of theµ function
as described above. The notationrel1 <+ rel2 denotes the overriding of a relation by
another one.

event tr b= /* firing of any transition ti */
ANY ti WHERE

ti ∈ transitions ∧ ∀ pp.(pp ∈ placesBefore[{ti}] ⇒ µ(pp) > weightBefore(ti , pp))
THEN

LET pbef , paft , pcom BE

pbef = placesBefore[{ti}] − placesAfter [{ti}]
∧ paft = placesAfter [{ti}] − placesBefore[{ti}]
∧ pcom = placesAfter [{ti}] ∩ placesBefore[{ti}]
IN

/* update of places aftert i */
mu := mu <+{pp, vv |

pp ∈ pbef ∧ vv ∈ NAT ∧ vv = mu(pp) − weightBefore(ti , pp)}
<+{pp, uu | pp ∈ paft ∧ uu ∈ NAT ∧ uu = mu(pp) + weightAfter(ti , pp)}
<+{pp,mm | pp ∈ pcom ∧ mm ∈ NAT ∧ mm = mu(pp) − weightBefore(ti , pp)

+weightAfter(ti , pp)}
END

END

Fig. 3.A shape of a B event capturing the evolution of a basic P-net

We captured the behavioral semantics of basic P-nets with a Babstract system with
asingle eventrepresenting the transitions of the net. This abstract system simulates the
evolution of the P-net. Using a single event for all transitions instead of one event per
transition simplifies the generalisation and the reasoningon the embedding; indeed only
the structure of a parameter P-net needs to be translated foreach new project.

Generic Structure of the Embedding We show in Figure 4 the B generic structure
which holds all P-net model; it is the abstract system namedEmbeddedPN . We separate
the encoding of the semantics (EmbeddedPN) which works for any P-net and the static
structure part (PetriNet) which is specific to a problem and should be included for
a given problem. The static part (in thePetriNet abstract system) is completed with
some variables:pl actions is the set of actions attached to the places. The injective
(total) function2 pl treatment ∈ places pl actions records the action located in
each place; a specific elementnullaction is used for the initialisation and for action-
less places. Technically, the use of thenullaction avoids a blocking of the system at the
initialisation, were all the actions should be disabled (i.e. their guards are false).
The systemEmbeddedPN has two variables: the relationtrans places records, for the

2 It is injective because we need the reverse function.

8

currently fired transition(s), the output places which are not yet processed; the function
guard P actions is used to get the guard of each place action.
The single eventevent tr manages the firing of transition and thus the evolution of
the considered net. This event is improved and is replaced inthe following sections by
two (or several events according to the considered policy) related events (action ak,
fire transition).

SYSTEM EmbeddedPN
INCLUDES

PetriNet /* any described P-net; this is a parameter */
VARIABLES

guard P actions, trans places

INVARIANT

guard P actions ∈ pl actions → BOOL

∧ trans places ∈ transitions ↔ places

INITIALISATION

guard P actions := ((pl actions − {nullaction}) × {FALSE})
∪{(nullaction,TRUE)}

‖ trans places := {}
EVENTS

event tr b= · · · /* for any transition ti */
END

Fig. 4.Generic Structure of the Embedding

Therefrom we extend the embedding to cover more complicatedcases: action man-
agement. Indeed, according to their types (place/transitions, conditions/event, resources,
etc), P-nets may deal with data and actions (or treatments) in various manners.

In some P-nets the places with tokens may model availabilityof data; in this case
an action may be associated to the transitions related to theplaces.

In other models, some places may contain action which is thenguarded by one or
several transitions. It is for instance the case in a net modelling a process writing some
data in exclusion with other writer processes; a specific place is often used in such a case
in order to handle the exclusion between processes. Therefore there is not a single way
to embed the P-nets. We investigated both cases of action (ortreatment) attachments:
attachment of treatments to the places and to the transitions.

3.4 Treatement of Non-Basic Nets

In the previous section, we considered the evolution of basic P-nets; no specific policies
or treatments are considered.

High Level Petri Nets High Level Petri Nets (HLPN) were introduced to overcome the
problem of the explosion of the number of elements needed forlarge computer systems.
HLPN usei) structured data to model the tokens, and algebraic expressions to annotate

9

the net elements;ii) transition modes to describe more elaborated operations/actions.
Within HLPN the enabling of a transition depends not only on the availability of the
tokens but also on their nature. There are several achievements of HLPN [13];
Predicate/Transition-Nets [9] and Colored Petri Nets [12,15] are two forms of HLPN.
In this article, we consider an abstraction of the ideas of HLPN. Actions (treatments or
operations) may be associated to places and transitions of the nets. This corresponds
to the idea of structured tokens, typed places and typed transitions, and more generally
the execution of some operations associated to the places orto the transitions of a net.
Accordingly, we propose a generic treatment of the whole.

The study is achieved step by step; first we examine the formalisation in the case
where actions are attached to places only. Then we study the cases where they are
associated to transitions. Finally we consider the generalcase where actions are attached
to both the places and the transitions.

Embedding into B of Petri Nets with Actions Attached to Places The action attached
to a place should be achieved when the input transition associated to the place (the
guard) is fired. Therebyeach action in a place of a P-net is translated as a (guarded)
event of the B abstract system.
In practice, actions need some time to be completed. Therefore firing a transition may
be achieved in two steps:i) enabling the guard of all the actions attached to the output
places of the transition;ii) launching non-deterministically theseinvolved actions. All
of them should be performed in any order.

A4

t1

A1

A2A3

t2

A6

A5

t3 t4

p5 p6p2p3

p1 p4

Fig. 5. Interdependent Actions

This raises some questions: what should be the duration of the actions and the en-
abling of other transitions? Should we wait for the completion of an action before con-
sidering another action? What is the scheduling of the enabled transitions and enabled
actions? Considering these questions with respect to the Figure 5, one has an idea of
the complexity of the scheduling of actions; the transitiont1 enables the actions {A2,
A3}; t2 enables the actions {A4, A1}; t3 enables the action {A6}; t4 enables the action
{A5}.
These actions are interdependent because the places that contain them are either an in-
put place or an output place of the fired transitions. There are cycles; for example, firing
repeatedly the transitions t3 and t4.
To deal with the current situation, we use the previously defined (see Section 3.3) vari-
ablespl treatment , pl actions andguard P actions. The firing of a transitionti is

10

handled with two events which correspond to the two steps distinguished above.

Step. 1The first step of the transition firing is captured with the B eventfire transition tr
given in Figure 6. The output places of a transitionti are specified as:paft = placesAfter [{ti}].
The involved actions associated to these places are:involved actions = paft ⊳ pl treatment .

The guards of the involved actions attached to the output places of the fired tran-
sition are enabled (∀ Ai ∈ placesAfter [{ti}]. guard(Ai) := TRUE). The func-
tion guard P actions is updated in order to enable the guards. This is done with
a Cartesian product:ran(involved actions) × {TRUE}. The marking of the input
places is updated. The fired transition and its output placesare recorded in the rela-
tion trans places; this is necessary for the scheduling of involved actions. Indeedall
the actions of the output places should be performed before the actions of the possible
transitions they can enable.

fire transition tr b= /* for any transition ti */
ANY ti WHERE

ti ∈ transitions

∧ ∀ pp.(pp ∈ placesBefore[{ti}] ⇒ µ(pp) > weightBefore(ti , pp))
THEN

LET pbef , paft , involved actions BE

pbef = placesBefore[{ti}] ∧ paft = placesAfter [{ti}]
∧ involved actions = paft ⊳ pl treatment

IN

/* enabling the guards of involved actions */
guard P actions := ran(involved actions) × {TRUE}

/* udpate of input places ofti , */
/* output places ofti will be updated after the actions */

‖ mu := mu <+ {pp, vv | pp ∈ pbef ∧ vv ∈ NAT ∧ vv = mu(pp)
−weightBefore(ti , pp)}

/* update of places to be treated after the fired transition */
‖ trans places := trans places ∪ ({ti} × paft)

END

END

Fig. 6. Piece of the dynamic part of the generic structure (a)

Since the B events are atomic we cannot update the marking of output places during
the first step; they will eventually enable other transitions which will take place. More-
over, to cope with practical application of P-nets, one has to consider the "run until
completion" of the various actions during their scheduling.

Step. 2The second step of the firing is captured with the eventaction Ak (see Fig.
7). One B event is described for each action associated to a place. This enables us to
handle the high level aspect of the net; indeed the treatments depend on the tokens and
on the transitions. The guard of each action is maintained (to TRUE) until the action is

11

started and performed. The actions attached to the output places which are still enabled,
are non-deterministically performed; they are recorded in(the range of)trans places.
But, the actions in the places contained intrans places can be performed at any time
(due to the non-determinism of event occurrence). When an action is completed its
guard is disabled and the number of tokens of the related place is updated: the function
trans places is updated, themu function is updated to set the marking of output places.

action Ak b= /* for an action Ak (attached to a place pp) */
ANY Ak WHERE

Ak ∈ actions

∧ guard P actions(Ak) = TRUE /* one of the enabled actions*/
THEN

LET pp, tr ,weiga, · · · BE

∧ pp = pl treatment−1(Ak) /* the place associated to Ak */
∧ tr = trans places−1(pp) /* the transition before pp */
∧ weiga = weightAfter(tr , pp) /* weight of the edge */

∧ · · · /* unused parts, cut */
IN

guard P actions(Ak) := FALSE

‖ mu(pp) := mu(pp) + weiga

‖ trans places := trans places − {(tr , pp)}
‖ · · · /* location of an effective Ak */

END

END

Fig. 7. Piece of the dynamic part of the generic structure (b)

However, there are some shortcomings with the current situation. There is a kind
of loss of priority between actions: if the effect of one of the currently enabled actions
contributes to fire another transition, the actions which are enabled by this latter tran-
sition can be performed before the actions already enabled (this comes fatally from the
substitutiontrans places := trans places ∪ ({ti} × paft)).
Another shortcoming is the following: when there are cycles, an enabled guard (of an
action) can be overwritten; that is, the enabling conditioncan be observed again whereas
the already enabled action is not yet performed.

We solve these problems in the general case presented later on, by using priorities.

Embedding into B of Petri Nets with Actions Attached to Transitions In the same
way as for the previous case with places, a total functiontr treatment ∈ transitions →
tr actions records the action associated to each transition.
tr actions is used for the set of actions attached to all the transitions; it is defined in
the static structure (PetriNet). When an enabled transition is fired, its associated action
should be performed before the update of the marking of the output places, otherwise
another transition may take the priority over the current one.
Several transitions may share the same input place(s). But,when the latter has the nec-

12

essary number of tokens to enable the transitions which share the place, only one of
the enabled transitions is fired. Therefore two steps are necessary to handle the firing
of a transition. In a first step, one of the enabled transitions is non-deterministically se-
lected; the guard of the action associated to this transition is enabled. The marking of
all the input places is updated. This is quite similar to the eventfire transition tr . In
a second step, the transition action is performed; its guardis disabled and, the marking
of the output places is updated. These places may enable other transitions and so forth.
We get two B events corresponding to the described steps:i) a firing event which is
used to select a transition and to update the input places; this event deals with all the en-
abled transitions;ii) each transition action has an event with its associated guard which
depends on the marks of input places.

Embedding into B of Petri Nets with Actions Attached to both Places and Tran-
sitions In the current case, when a transition is fired, the attached action is enabled
and the marking of the output places of the transition is updated; these output places
have actions which should be enabled. After that, the transition action is performed, it
enables the actions attached to the output places. Moreover, the actions linked to the
places should be performed before enabling the transitionslinked to them. In order to
embed this semantics, we use two functions additionally with the preceding variables:
enabled P actions for the currently enabled place actions andenabled T actions

for the currently enabled transition actions. Remind thattrans places records which
output places are not yet processed for the currently fired transition.

The embedding is achieved according to priority rules. The priority between actions
are handled as follows. A transition is fired ifi) the input places have the required
number of tokens,ii) there is no previous enabled place action not yet performed;this
is checked with(trans places = {}). Indeed when a transition is fired, its action is
enabled and it enables some (output) place actions. These latter should be performed
before firing another transition. This policy solves the problem of guard overwriting.

Therefrom the eventfire transition tr is modified as described in Figure 8.

The remaining events (not detailed here) are the following:
enable transition action guard; it sets the guard of an enabled transition action to
true, then it disables the transition guard.
enable place action guard; it sets the guard of an enabled place action totrue, up-
dates themu function and updatestrans places by removing the treated place;
launch transition action aj; it launches one of the transition action whose guard is
true and then it sets the guard tofalse;
launch place action ak; this one launches a place action whose guard is enabled,
then the guard is disabled.

All these five events (of the abstract systemEmbeddedPN) simulate an interleaving
run of the firing of transition actions and place actions, butpriority is employed to avoid
wrong behaviour of the actions. The entire system is checkedfor consistency using
Atelier B and analysis issues are experimented with variouscase (small-size) studies.

13

fire transition tr b= /* for any transition ti */
ANY ti WHERE

ti ∈ transitions ∧ ∀ pp.(pp ∈ placesBefore[{ti}] ⇒ µ(pp) > weightBefore(ti , pp))
∧ trans places = {}∧ (enabled P actions⊲ { TRUE }) ={}

/* and there is no action to be treated (this is priority handling) */
THEN

LET pbef , paft , involved actions BE

pbef = placesBefore[{ti}] ∧ paft = placesAfter [{ti}]
∧ involved actions = paft ⊳ pl treatment

∧ · · · /* unused here, cut */
IN

enabled T actions(ti) := TRUE

/* enable the action guards of the involved places */
‖ enabled P actions := ran(involved actions) × {TRUE}
‖ mu := mu <+ {pp, vv | pp ∈ pbef ∧ vv ∈ NAT ∧ vv = mu(pp)

−weightBefore(ti , pp)}
‖ trans places := {ti} × paft

END

END

Fig. 8. Piece of the dynamic part of a Petri Net with Place and Transition Actions

4 Analysis Issues
4.1 Analysis of Petri Nets

Very often, two classes of properties are studied on P-nets:one is about the boundedness
of the nets. For example the accumulation of tokens in a placeis symptomatic of a bad
functioning of a model. The second class is about the liveness of the nets. By studying
the reachability of certain marking, one can detect deadlock freedom for example. In
all these cases, the marking graph (the set of reachable markings) should be computed.
This aspect of the analysis may raise some problems. The sizeof the graph may be
too large for an analysis in a reasonable time; the graph may also be infinite. When
the graph is infinite, a covering graph is used instead; it enables to check a part of the
desired properties.

Three main classes of analysis techniques [17,19] for P-nets are:
Reachability analysis: it is based on state space exploration/reduction techniques using
model checking. The main idea is to construct an occurrence graph (a directed graph)
which has a node for each reachable system state (a marking) and an edge for each
possible state transition. The analysis is then based on such graph.
Reachability is like a simulation of the modelled system execution. It allows for a rapid
analysis of the system to check for its functionalities.
Structural analysis: algebraic analysis are applied here.
Invariant analysis: it consists to check that some properties associated to theplaces are
satisfied for all reachable states (a net marking) of the modelled system.

The advantages of the first analysis techniques are: a graph is constructed and anal-
ysed systematically; the constructed graph may be very large; but there are techniques

14

which work with minimized graphs. The main disadvantage is that, such a graph may
become very large, even for very small systems, making the analysis unpractical due to
state explosion problem.

One of the aspects on which this work contributes in is the definition of the basis
for the combined use of analysis techniques and tools. The available B platforms may
be used to analyze the safety properties of systems which aremodelled with P-nets.

4.2 An Illustration: Producer-Consumer with Semaphore

semaphore

Empty_buf

1

2

1

0

0

P_produces

P_ready

D_ready

P_start_writing

P_writing

P_finish_writing

C_start_reading

C_waits_D

D_read
0

C_consumes

C_reading

C_finish_reading

0

0

0

D_in_buf

Fig. 9. A producer-consumer example

We described and checked the producer-consumer system depicted in Figure 9 using
our approach. Only the description of the abstract systemPetriNet is given, and here
it encodes the specific Producer-Consumer net. This encoding of the Petri Net is then
included in the systemEmbeddedPN which is not changed (it already gathers all P-nets
semantics). The specifications are given in the appendix.

Additionally to the properties that may be analysed in a standard Petri net platform,
some safety properties that may be analysed using the B toolsare:

– Boundedness of some places: the places Emptybuf and D in buf (see Fig. 9)
are bounded. This is formalized as the following predicate which is added to the
invariant:
mu(Empty buf) 6 2 ∧ mu(D in buf) 6 2 (prop1)

– There is not a wrong usage of the resources (here the buffer):
mu(Empty buf) + mu(D in buf) = 2 (prop2)

– The system islive; that means there is always at least one transition which canbe
fired; this is formalized with:
placesBefore~[dom(nmu ⊲ {ii | ii ∈ N ∧ ii > 0})] 6= {}

15

The properties described above are integrated in the invariant of the our B specification
(see appendix A) of the producer-consumer and proved.This illustrates how we may
manage the modelling and analysis work through Petri nets and B.

5 Conclusion and Further Work

We presented an embedding of Petri nets formalisms into the Babstract system for-
malism. The embedding is systematic and it covers basic P-nets as well as high level
nets. The current work fills a gap between the widely practiced P-nets formalism and
the proof-based development technologies especially the Bmethod which is based on
abstract machines, refinement and theorem proving. This is astep towards a multi-facet
analysis framework for relating discrete system modellingtechniques.
Results.We have provided a two-level embedding infrastructure madeof a generic B
abstract system that may be used to describe any Petri net and, an abstract system that
includes (genericity) the first one and whose events capturethe semantics of Petri nets
evolution. Various policies concerning high level P-nets have been considered. Con-
cretely we may combine the use of P-nets and B method in the same project; for exam-
ple we may begin the modelling with an existing graphical tool dedicated to the P-nets
and then follow with the B method for the related aspects. This work is generally re-
lated to works on embedding techniques but it is specificallyrelated to the work by
Sekerinski and Zurob [20] on Statecharts and B. In this work,unlike our approach, the
abstract structure of Statecharts is translated into the semantically equivalent one in B.
In or work the the translation is performed by considering the global semantics instead.
Further work.Ongoing effort focuses on the automation of all the chains from a P-Net
tool to the B tools. We investigated the transformation of the XML outputs of the tools
such as the PEP tool3 into a B machine (see appendix??). The result is to be passed
as the included machine. But, many experiments of various size are still needed for the
scalability of our translation process. Meanwhile, user-friendly tools to facilitate the
combination of the techniques are to be developed.

References

1. J-R. Abrial. Extending B without Changing it (for developping distributed systems).Proc.
of the 1st Conf. on the B method, H. Habrias (editor), France, pages 169–190, 1996.

2. J-R. Abrial, D. Cansell, and D. Mery. Formal Derivation of Spanning Trees Algorithms. In
D. Bert et al., editor,ZB’2003 – Formal Specification and Development in Z and B, volume
2651 ofLNCS, pages 457–476. Springer-Verlag, 2003.

3. J-R. Abrial and L. Mussat. Introducing Dynamic Constraints in B. InProc. of the 2nd
Conference on the B method, D. Bert (editor), volume 1393 ofLecture Notes in Computer
Science, pages 83–128. Springer-Verlag, 1998.

4. R.J. Back and R. Kurki-Suonio. Decentralisation of Process Nets withCentralised Control.
In Proc. of the 2nd ACM SIGACT-SIGOPS Symp. on Principles of DistributedComputing,
pages 131–142, 1983.

5. R. Boulton, A. Gorgon, M.J.C. Gordon, J. Hebert, and J. van Tassel. Experience with Em-
bedding Hardware Description Language in HOL. InProc. of the International Conference
on Theorem Provers in Circuit Design: Theory, Practice and Experience, pages 129–156,
North-Holland, 1992. IFIP TC10/WG 10.2.

3 sourceforge.net/projects/peptool

16

6. J. P. Bowen and M. J. C. Gordon. A Shallow Embedding of Z in HOL.Information and
Software Technology, 37(5-6):269–276, 1995.

7. M. Butler and M. Walden. Distributed System Development in B.Proc. of the 1st Conference
on the B method, H. Habrias (editor), France, pages 155–168, 1996.

8. D. Cansell, G. Gopalakrishnan, M. Jones, and D. Mery. Incremental Proof of the Produc-
er/Consumer Property for the PCI Protocol. In D. Bert, J. P. Bowen, M. C. Henson, and
K. Robinson, editors,ZB’2002 – Formal Specification and Development in Z and B, volume
2272 ofLNCS, pages 22–41. Springer-Verlag, 2002.

9. H. J. Genrich. Predicate/Transition Nets. In W. Brauer, W. Reisig, and G. Rozenber, editors,
Petri Nets: Central Models and their Properties, Advances in Petri Nets(1986), volume 254
of Lecture Notes in Computer Science, pages 207–247. Springer-Verlag, 1987.

10. A. W. Gravell and C. H. Pratten. Embedding a Formal Notation: Experiences of Automating
the Embedding of Z in the Higher Order Logic of PVS and HOL. In[11] , pages 73–84,
1998.

11. J. Grundy and M. Newey, editor.Supplementary Proceedings of the 11th International Con-
ference on Theorem Proving in Higher Order Logics: Emerging Trends, (TPHOL’98). Aus-
tralian National University, 1998.

12. K. Jensen. Coloured Petri Nets and the Invariant Method.TCS, 14:317–336, 1986.
13. K. Jensen. Coloured Petri Nets Vol. I-III. InEATCS Monographs on Theoretical Computer

Science, EATCS. Springer-Verlag, 1992-1996.
14. L. M. Kristensen and K. Jensen. Specification and Validation of an Edge Router Discovery

Protocol for Mobile Ad-hoc Networks. InProceedings of INT’04, volume 3147 ofLNCS,
pages 248–269. Springer-Verlag, 2004.

15. Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen. Application of Coloured
Petri Nets in System Development. volume 3098 ofLNCS, pages 626–685. Springer-Verlag,
Jan 2004.

16. C. Muñoz and J. Rushby. Structural Embeddings: Mechanization with Method. In J. Wing
and J. Woodcock, editor,Proc. of the World Congress in Formal Methods (FM99), volume
1708 ofLecture Notes in Computer Science, pages 452–471, France, 1999. Springer-Verlag.

17. T. Murata. Petri-Nets: Properties, Analysis and Applications. InProc. IEEE, volume 77,
pages 541–580. IEEE, 1989.

18. W. Reisig. Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets.
Springer, 1998.

19. W. Reisig and G. Rozenberg, editors.Lectures on Petri nets I: Basic models and II: Appli-
cations, volume 1491/1492 ofLecture Notes in Computer Science. Springer-Verlag, 1998.

20. E. Sekerenski and R. Zurob. Translating Statecharts to B. InProc. of the Integrated Formal
Methods (IFM’2002), volume 2335 ofLecture Notes in Computer Science, UK, May 2002.
Springer-Verlag.

17

A The B machine of the Petri Net

/∗ Encoding of the Producer−Consumer Petri−Net∗/
MACHINE

ProdCons
SETS
/∗−−−− fill in the two sets PLACE and TRANSITION−−−−−−∗/

PLACE = {P_ready, D_ready, P_writing, Empty_buf, semaphore,
D_in_buf,D_read, C_reading, C_wait_D}

; TRANSITION = {P_produces, P_start_writing, P_finish_writing ,
C_consumes, C_finish_reading , C_start_reading }

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
; ACTION = {aj, ak, tai , taj , nullaction } /∗ actions associated ∗/
; NET_Type = {pure, unspecified , colored}
; NET_Mode = {edition, analysis } /∗ edition ∨ analysis mode∗/
VARIABLES

net_type /∗ PN type ∗/
, net_mode /∗ PN mode ∗/

CONSTANTS /∗ parameter of the machine∗/
places /∗ the places in the PN ∗/

, transitions /∗ the transitions in the PN ∗/
, placesBefore /∗ places before a transition ∗/
, placesAfter /∗ places after a transition ∗/
, weightBefore /∗ weight of an edge before a transition∗/
, weightAfter /∗ weight of an edge after a transition∗/
, pl_actions /∗ all actions attached to the places∗/
, tr_actions /∗ all actions attached to the transitions∗/
, pl_treatment /∗ treatment (or actions) associated to each place∗/
, tr_treatment /∗ treatment (or actions) associated to each transition∗/
, mu /∗ marking of each place ∗/

PROPERTIES
places ⊆ PLACE

∧ transitions ⊆ TRANSITION
∧ placesBefore ∈ transitions ↔ places
∧ placesAfter ∈ transitions ↔ places
∧ weightBefore ∈ transitions × places 7→ NAT
∧ dom(weightBefore) = placesBefore
∧ weightAfter ∈ transitions × places 7→ NAT
∧ dom(weightAfter)⊆ placesAfter
∧ dom(placesBefore)⊆ transitions

/∗ every transition has at least one place after it∗/
∧ dom(placesAfter)⊆ transitions
/∗−−−−− Fill in description of the Petri−Net to be studied∗/
∧ places = { P_ready, D_ready, P_writing , Empty_buf, semaphore, D_in_buf,
D_read, C_reading, C_wait_D }
∧ transitions = {P_produces, P_start_writing , P_finish_writing ,
C_consumes, C_finish_reading , C_start_reading }

18

/∗−−−−− Fill in, using maplet∗/
∧ placesBefore = {
P_produces7→ P_ready,

P_start_writing 7→P_ready,
P_start_writing 7→Empty_buf,
P_start_writing 7→semaphore,
P_finish_writing7→P_writing,
C_consumes7→D_read,
C_finish_reading7→C_reading,
C_start_reading7→C_wait_D,
C_start_reading7→D_in_buf,
C_start_reading7→semaphore }

∧ placesAfter = {
P_produces7→ D_ready,

P_start_writing7→ P_writing,
P_finish_writing7→P_ready,
P_finish_writing7→D_in_buf,
P_finish_writing7→semaphore,
C_consumes7→C_wait_D,
C_finish_reading7→ D_read,
C_start_reading7→C_reading }

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
∧ weightAfter = placesAfter∗{1} /∗ weight of edge after a transition∗/
∧ weightBefore = placesBefore∗{1}
∧ pl_actions ⊆ ACTION

/∗ the actions controlled by the PNet∗/
∧ tr_actions ⊆ ACTION

/∗ all the transition actions controlled by the PN∗/
∧ nullaction ∈ pl_actions ∩ tr_actions
∧ pl_treatment∈ places 7→ pl_actions /∗ which place has what action∗/
∧ tr_treatment ∈ transitions 7→ tr_actions /∗ which transitions has what action∗/
∧ pl_actions = { nullaction } /∗ actions sur les places∗/
∧ tr_actions = { nullaction } /∗ actions sur les transitions∗/
∧ pl_treatment = places∗pl_actions /∗ ∗/
∧ tr_treatment = transitions∗ tr_actions /∗ ∗/
∧ mu ∈ places→ NAT
/∗−−−−−−Fill in the marking∗/
∧ mu = {
(P_ready7→1), (Empty_buf7→2), (semaphore7→ 1), (D_ready7→0),

(P_writing7→0), (D_in_buf7→0), (D_read7→0), (C_reading7→0), (C_wait_D7→ 0)}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
DEFINITIONS

GUARD b= B

INVARIANT
net_type∈ NET_Type

/∗ no cycle ∈ place_i →֒ trans−i →֒ place_i ∗/
∧ ((net_type = pure)⇒ (placesBefore∩ placesAfter =∅))
∧ net_mode∈ NET_Mode/∗ in analysis mode after the edition∗/
/∗−−−− Include here desired safety properties ∗/
/∗ Shape∈ (mode = analysis)b=> the properties∗/

19

/∗
∧ ((mu(Empty_buf)6 2)∧ (mu(D_in_buf)6 2)) /∗ (prop1) ∗/
∧ (mu(Empty_buf) + mu(D_in_buf) = 2) /∗ (prop2) ∗/
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
INITIALISATION

net_type := unspecified
‖ net_mode:= analysis
OPERATIONS

set_edition_mode =/∗ set the mode to edition∗/
SELECT

net_mode = analysis
THEN

net_mode:= edition
END

;
res ←− which_mode =/∗ what is the current mode∗/

BEGIN
res := net_mode

END
END

B The B Structure of the Embedding Machine

/∗ Globale Machine Embeddeding A Petri Encoding∗/
MACHINE

EmbeddedPN_PT
INCLUDES

ProdCons/∗ Parameter ; the embedded Machine∗/
VARIABLES

enabled_P_actions /∗ currently enabled place actions∗/
, enabled_T_actions /∗ currently enabled transition actions∗/
, guard_P_actions /∗ for all actions ∗/
, guard_T_actions
, trans_places /∗ which transition currently activates some places∗/
, nmu /∗ a replacement of mu so as to update mu (¬ modifiable) easily∗/

DEFINITIONS
GUARD b= B

INVARIANT
enabled_P_actions∈ pl_actions 7→ GUARD

/∗ the currently enabled place actions∗/
∧ enabled_T_actions∈ tr_actions 7→ GUARD

/∗ the currently enabled transition actions∗/
∧ guard_P_actions∈ pl_actions → GUARD /∗ the guard of each place action∗/
∧ guard_T_actions∈ tr_actions → GUARD /∗ the guard of each transition action∗/
. . .

END

20

C The Experimental Toolchain Architecture

Peptool pnml_linegen pnml2B

.mch.pnml.ll_net/.hl_net

module

file

(via .xml, .xls)

Fig. 10.Overview of the Experimental Toolchain

We have undertaken the development of a toolchain to mechanize our bridging pro-
cess. Currently the encoding of a working Petri net is systematic but still manual; for
this purpose the generic machine (PetriNet) is used as a pattern; only a few part of it
is filled; that is the values of the sets PLACE and TRANSITION in the SETS clause
and, the values of the variables places, transitions and last the variables placesBefore,
placesAfter. In addition, we also have a pattern to introduce the desired properties.

The modulepnml2b in the architecture (Fig. 10) is devoted to the mechanisation of
this process.

