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Introduction

Event-B: Some References

- Modelling in Event-B: System and Software Engineering,
J-R. Abrial, Cambridge, 2010

- Modelling and proof of a Tree-structured File System. Damchoom,
Kriangsak and Butler, Michael and Abrial, Jean-Raymond, 2008.

- Applying Event and Machine Decomposition to a Flash-Based Filestore in
Event-B. Damchoom, Kriangsak and Butler, Michael; 2009.

- Faultless Systems: Yes We Can!, Jean-Raymond Abrial, 2009

- Modelling an Aircraft Landing System in Event-B,
Dominique Méry, Neeraj Kumar Singh, 2014

- Closed-Loop Modelling of Cardiac Pacemaker and Heart , Dominique Méry,
Neeraj Kumar Singh, 2012
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Introduction

Embedded systems features

Embedded system
An embedded system is a computer system with a dedicated function
within a larger mechanical or electrical system, often with real-time
computing constraints. (Wikipedia)

Main features
Small/medium size; task specific; interaction with hardware; low power
consumption; can run for long time in some devices; errors can be
critical; cannot be repaired; can be standalone or not;

Requirements
Rigorous design and implementation mechanisms and techniques.
Software needs to be correct, reliable, dependable: rigorous methods.
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Introduction

Example: landing gear system

Figure: Architecture of a landing gear system (Boniol & Wiels, 2014)
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Introduction

Global architecture of embedded/control system

Physical environment 

Control part

Figure: View of an embedded system (a)

Physical environment 

Control part

Figure: View of an embedded system (b)

But, this is very abstract!

Details (refinement)
Hard part = Control Process Unit + Memory (ROM and RAM), Input
Devices, Output Devices, Comm Interfaces, Specific devices/materials
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Introduction

Refined global architecture of embedded system

Controled device

Control Software

Sensors Actuators

CPU MemoryASIC

computer

Figure: Architecture of embedded system
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Introduction

Design of embedded system

Idealy,
codesign: System on Chip (SoC)
System engineering→ Top-down approach
Hybrid modelling

Some existing approaches and tools
Tools like MatLab, Simulink, LabView, Esterel, SysML, ...
ICE (In Circuit Emulator) to integrate Hw/Sw (when Hw is unavailable);
but specific to each processor.

Event-B: A top-down development method, dedicated to system
engineering, equipped with tools, extensible.
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Introduction

Global architecture of embedded system in Event-B

Controled device

Control Software

Sensors Actuators

CPU MemoryASIC

computer

signal/eventsignal/event

Figure: Architecture of embedded system in Event-B
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Introduction

Event B Specification Approach

Correct-by-construction: build correctly the systems
(abstraction, modelling, refinement, composition/decomposition, proof)

Some hints to formal methods:
Formal methods are rigorous engineering tools.
Formal methods are means to build executable code from
software requirement documents (informal, natural language).
Requirement Documents (provided by clients) should be
rewritten after analysis and understanding into Reference
Document (where every thing is made clear and properly labelled
for traceability).
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Introduction

B Method and Event B

Event-B is an extension of the B-method (J-R. Abrial).
It is devoted

for system engineering (both hardware and software), top-down
approach
for specifying and reasoning about complex systems : concurrent
and reactive systems.

Event-B comes with a new modelling framework called Rodin.
(like Atelier B tool for the classical B)
The Rodin platform is an Eclipse-based open and extensible tool
for B model specification and verification.
It integrates various plugins: B Model editors, proof-obligation
generator, provers, model-checkers, UML transformers, etc
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Introduction

Event B Modelling and dissemination

Yet used in various case studies and real cases:
Train signalling system
Mechanical press system
Access control system
Air traffic information system
Filestore system
Distributed programs
Sequential programs
Cardiac Pacemaker
etc
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Introduction

Event B Modelling: principles

Observe the behaviour of any system; what matters?
A set of changes of its states.
But, the observation distance does matter!
(the details may be observed or not: parachutist paradigm)
The observation focus does matter!
(the observed changes are not the same)
Different points of view = several abstractions.
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Introduction

Remind B Specification Approach

State space = correct states

wrong states

op ti

op tj op tk

{x,y,z,... | Invariant(x,y,...)}

Figure: Do it right with B

VARIABLES
x, y, z, ...

INARIANT
Inv(x,y,z, ...)

OPERATIONS
ti = ...
tj = ...
tk = ...
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Introduction

B Method: general development approach

Machine

Raffinement

Raffinement

Spécification informelle
(cahier de charges)

raffinement prouvé

raffinement prouvé

Développement B

implantation

Code exéc.

Analyse Système

Modélisation 

formelle

Structuration

Figure: Development process with B
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Introduction

Event B Specification Approach

Event B Specification: start with Abstract system or Abstract model

An abstract system is a mathematical model of an asynchronous
system behaviour

System behaviour: described by events which are observed!

Events are guarded actions/substitutions

Event occurrences involve a State-transition model.

A system model is a state-based model equipped with events

J. Christian Attiogbé (Tlemcen, October 2017)Specification and verification of embedded systems 16 / 76



Introduction

Event B Development Structuring

Start with an Abstract system
(or abstract model)

Refinement of data and
events
The parachutist paradigm /
microscope paradigm (JR
Abrial)

Decomposition (of a system
into sub-systems, Hw, Sw)

. . .

. . .

refines

refines

refines

decomposition

As

Figure: Event B Design
structure

J. Christian Attiogbé (Tlemcen, October 2017)Specification and verification of embedded systems 17 / 76

Introduction

B Abstract System

Variables

Predicate

Events

SYSTEM
SETS ...
VARIABLES

...
INVARIANT

... predicate
INITIALISATION

...
EVENTS

...
END

but structured more efficiently using Contexts and machines.
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Introduction

Remind! Capturing the correct state space and events

State space = correct states

wrong states

op ti

op tj op tk

{x,y,z,... | Invariant(x,y,...)}

Figure: Events should preseve correct states
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Introduction

Capturing a system behaviour - Events

The behaviour of a discrete system is a sequence of changes
(system transitions).
The changes may be internal or enabled by external signals.
Each event describes the occurrence of a change in the discrete
system under modelisation.

event = when Conditions then Effects
Event B uses Guards and Actions [Dijkstra]
But, the behaviour of a system may/should be captured gradually.
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Introduction

Formal Description of Events

An event has one of the following general forms (Fig. 10)

name =̂ /* event name */
when /* the guard */

P(gcv)
then

GS(gcv)
end

(WHEN/SELECT Form)

name =̂ /* event name */
any bv where

P(bv, gcv)
then

GS(bv, gcv)
end

(ANY Form)

Figure: General forms of events

gcv denotes the global constants and variables of the abstract;
bv denotes the local bound variables of the event;
P(bv, gcv) a predicate.
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Introduction

Formal Description of Events

An event without guard has the following form:

name =̂ /* event name */
begin

GS(gcv)
end
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Introduction

Abstract System (or a model, or a machine)

The guard of an event with the WHEN form is: P(gcv).
The guard of an event with the ANY form is: ∃(bv).P(bv, gcv).
The WHEN form is a particular case of the other.
The action associated to an event is modeled with a generalized
substitution using the variables accessible to the event:
GS(bv, gcv).
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Introduction

Abstract System : Semantics and Consistency

An abstract system describes a mathematical model that simulates the
behaviour of a system.
Its semantics arises from the invariant and is ensured by proof
obligations (PO).
The consistency of the model is established by such proof obligations.

Consistency of an event B model
PO: the initialisation establishes the invariant
PO: each event of the abstract system preserves the invariant of
the model

I(gcv) the invariant and GS(bv, gcv) the generalized substitution
modelling the event action.
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Introduction

Abstract System : Semantics and Consistency

the initialisation establishes the invariant;

[U]Inv

each event preserves the invariant:
In the case of an event with the ANY form, the proof obligation is:

I(gcv) ∧ P(bv, gcv) ∧ prdv(Se)⇒ [GS(bv, gcv)]I(gcv)

Moreover the events (e) terminate:

I(Gcv) ∧ eGuard⇒ fis(eBody)

(note eBody = Se)
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Introduction

Abstract System : Semantics and Consistency

The predicate fis(S) expresses that S does not establish False:

fis(S)⇔ ¬ [S]False

ie
I(Gcv) ∧ eGuard⇒ ¬ [S]False

The predicate prdv(S) is the before-after predicate of the substitution S ;
it relates the values of state variables just before (v) and just after (v’)
the substitution S, also written BAe(v, v′).
The prdv(any x where P(x, v) then v := S(x, v) end) is:

∃x.(P(x, v) ∧ v′ = S(x, v))
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Introduction

Example: producer/consumer

Features: Concurrency and synchronization

produce (adata) consume(data)

buffer : DATA
bufferstate : {empty, full}

Producer Consumer

Figure: An overview of a producer-consumer

Concurrent running of a process consumer which retrieves a data
from a buffer filled by another process producer.
The consumer cannot retrieve an empty buffer and the producer
cannot fill in a buffer already full.

An event-driven model of the system is as follows:
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Introduction

Example : producer/consumer

Machine ProdCons /* the abstract model */
sets

DATA ; STATE = {empty, full}
variables buffer, bufferstate, bufferc
invariants

bufferstate ∈ STATE ∧ buffer ∈ DATA ∧ bufferc ∈ DATA
initialization

bufferstate := empty ‖ buffer :∈ DATA ‖ bufferc :∈ DATA
events

produce =̂ /* if buffer empty */
any dd where dd ∈ DATA ∧ bufferstate = empty
then buffer := dd ‖ bufferstate := full
end ;

consume =̂ /* if buffer is full */
select bufferstate = full
then bufferc := buffer ‖ bufferstate := empty
end

end

Figure: A Producer-Consumer Abstract System
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Introduction

Structuring Event-B Models

An event-B model is structured with
Contexts that contain carrier sets, axioms and theorems (seen by
various machines)
Machines which see the contexts and define a state space (static
part: variables + labelled invariants) and a dynamic part made of
some events.
A context may be extended; a machine may be refined.

CONTEXT

SETS
CONSTANTS
PROPERTIES

MODEL/MACHINE

VARIABLES
INVARIANTS
EVENTS

EXTENDS

CONTEXT MODEL

REFINES

SEES

SEES
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Introduction

Refinement: principles

Data refinement
(as usually: new variables + properties; binding invariant)
Event Refinement (extended):

Strengthening guards (unlike with Classical B)
More variables are introduced with their properties.
Each event of the concrete system refines an event of the
abstraction.
Introduction of new events which refine skip, and use new variables.
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Introduction

Refinement: principles

Let A with Invariant: I(av)
evta =̂ /* Abs. ev. */

when P(av)
then GS(av)
end

avec prdv(...) = Ba(av, av’)

Refined with: Invariant J(av,cv)
evtr =̂ /* Conc. ev. */

when Q(cv)
then GS(cv)
end

avec prdv(...) = Bc(cv,cv’)

Proof obligation:

I(av) ∧ J(av, cv) ∧ Q(cv) ∧ Bc(cv, cv′)⇒ ∃cv′.(Ba(av, av′) ∧ J(av′, cv′))
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Introduction

Event B Tools

First generation tools
Translation into classical B
B4free, Click’n’Prove

New generation tools: DataBase, Eclipse Plugins, ...
Rodin (From sveral EU Projects: Matisse, Deploy, etc)
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Modelling with Event-B

Refinement: structuring models

Refinement= development technique: various refinement strategies.

Horizontal refinement (feature augmentation)
From a small and abstract to a larger abstract model.
Details are gradually introduced in an abstract model in order to make
it more precise
(wrt to requirements).

. . .
refines

A0
refines

As
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Modelling with Event-B

Refinement: structuring models

Vertical refinement: From abstrat to more concrete models
Details are gradually introduced in an abstract model
The specifier introduces new variables and makes some choices
Events may be split : event decomposition
machines may be split too: machine decomposition
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Modelling with Event-B

Vertical Refinement: machine decomposition

. . .

. . .

refines

refines

refines

decomposition

As

Figure: Vertical refinement with machine decomposition
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Modelling with Event-B

Vertical Refinement: event decomposition

A coarse grain event is analysed and described in a more detailed
(fine grain) way.
Think about the transfer of a file via a network.

A given change consists of:
start by sub-change...;
follow by sub-change...;
end by sub-change...;
Hence, at least one sub-change (an event), refines the abstract
event.

refined by

absEvent

conEvent
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Modelling with Event-B

Machine Decomposition: structuring models

A coarse grain model is analysed and described in a more detailed
(fine grain) way.
Think about a system involving software and physical devices.

A given model is made of variables that model purely physical
devices, and events are associated only to these variables
The splitting is based on variables splitting (but not always
straightforward).
Divide and conquer: a small model is more tractable than a huge
one.

Decomposition enables one to break complexity, to structure and
develop more easily.

J. Christian Attiogbé (Tlemcen, October 2017)Specification and verification of embedded systems 37 / 76

Modelling with Event-B

Machine Decomposition: structuring models

Machine variables and events are partitioned into sub-machines.

Decomposition with Abrial’s style (shared variables): the
sub-machines may interact with each other via shared variables.
Shared variables are duplicated, new external-events are
introduced in each machine that has a shared variable in order to
ensure consistency of changes.
Decomposition with Butler’s style: the variables are not shared; an
event which uses variables in separate machines, is shared (then
separated-duplicated).
The sub-machines may interact with each other via
synchronisation over shared parameterised events.

Event-B Model Decomposition, C. Pascal(Systerel), R. Silva(Univ. of Southampton)
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Examples - Case studies

Event-B Model - Example: File transfer protocol

Specification of a file transfer between two sites: a sender and a
receiver.

sender receiver

transfer

sender file
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Examples - Case studies

Event-B Model - Example: File transfer protocol

sender receiver

transfer

sender file

virtually

1

2

3

4

5

collection of Data

A file is made of a set of data records.
From a very abstract level, the transfer is done instantaneously.
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Examples - Case studies

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

Channel

+ acknowledge

But, a file is made of a set of data records which are to be transfered
through a channel.
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Examples - Case studies

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

Channel

+ acknowledge

{ }1
2

From a more concrete level, the transfer is achieved step by step, one
record after the other.
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Examples - Case studies

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

Channel

{ }1
2

1

3

2

receiver

AckChan
{ }1,  2

sendata
recvdata

sendAckrecvAck

There are some intermediary operations, to send data on the channel
from the sender side, to receive data from the channel from the
receiver side. In the same way acknowledgements are sent/received.
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Examples - Case studies

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

Channel

{ }1
2

1

3

2

receiver

AckChan
{ }1,  2,  3,  4,  5

sendata
recvdata

sendAckrecvAck

4

3

5

5

4

Only after all the intermediary operations, the transfer will be
completed.
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Examples - Case studies

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

1

2

receiver

AckChan
{ }1,  2,  3,  4,  5

4

3

5

 transfer (now finished)

receiver file
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Examples - Case studies

Event-B Model - Example: File transfer protocol

Senderfile = some data records = 1..nr→ DATA
{1 7→ data1, 2 7→ data2 , · · · }
A channel is a set of such data records.
At each time, the channel contains a part (set inclusion) of the
sender’s file
The receiver acknowledges the received records numbers.
The file transfer is completed when all the records are
acknowledged.
Failure: loss of data/ack in the channels.

We have the model!
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Examples - Case studies

Event-B Model Example: File transfer protocol

MACHINE Transfer
SETS DATA
CONSTANTS nr /* file size : number of records
*/
PROPERTIES nr : NAT & nr > 1
VARIABLES
sf /* sender file */
, rf /* receiver file */

INVARIANT
& sf : 1..nr �> DATA /* all records of sf */
& rf : 1..nr +-> DATA /* probably part of
records of sf */
INITIALISATION
sf := {} || rf := {}

EVENTS
transf = /* instantaneous transfer, from far
way */
BEGIN
rf := sf
END

/* but, technically, we will need to anticipate
the intermediary events */
END
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Examples - Case studies

Event-B Model Example: File transfer protocol

MACHINE Transfer
SETS DATA
CONSTANTS nr /* file size */
PROPERTIES nr : NAT & nr > 1
VARIABLES
sf /* sender file */
, rf /* receiver file */
INVARIANT
& sf : 1..nr �> DATA /* all records of sf */
& rf : 1..nr +-> DATA /* probably part of
records of sf */
INITIALISATION
sf := {} || rf := {}

EVENTS
transf = /* instantaneous transfer, from far
way */
BEGIN
rf := sf
END

/* the following events are introduced by
anticipation of the forthcoming gradual
refinement*/
; sendta = skip
; recdta = skip
; sendac = skip
; recvac = skip
/* the followings are events that simulate the
non-releiabiliy of channels */
; rmvData = skip
; rmvAck = skip
END
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Examples - Case studies

Event-B Model Example: File transfer protocol

REFINEMENT
Transfer R1

REFINES Transfer

VARIABLES

cs /* current record to be sent */
, cr /* current record received */
, rf
, sf /* sender file */
, erf /* effectively received file */
, dataChan /* data channel */
, ackChan /* ack channel */
INVARIANT

cs : 1..nr+1 /* current to be sent */
& cr : 0..nr /* current received */
& cr <= cs /* current received is <= current
sent */
& cs <= cr+1 /* cr <= cs <= cr+1 */
& erf = (1..cr) <| sf
& dataChan <: (1..cs) <| sf
& ackChan <: 1..cr

INITIALISATION
cs := 1
|| cr := 0
|| rf := {}
|| sf := {}
|| erf := {}
|| dataChan := {}
|| ackChan := {}
EVENTS
transf =
WHEN
cs = (nr + 1) /* that is all cs are received
(last ack received) */
THEN
rf := erf /* not necessary, effective copy of
the received file in the receiver */
END

... (continued)
END
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Examples - Case studies

Event-B Model Example: File transfer protocol

/* new events introduced (ie. we "forget" the
anticipation in the abstract model) */
; sendta =
WHEN
cs <= nr
THEN
dataChan(cs) := sf(cs)
/* now wait for the ack, before updating cs */
END

; recdta =
WHEN cr+1 : dom(dataChan)
THEN
erf(cr+1) := dataChan(cr+1)
|| cr := cr + 1 /* the next data to be received
*/
END

; sendac =
WHEN cr /= 0 /* send ack for the received cr
data */
/* may be observed repeatedly until the next
data */
THEN
ackChan := ackChan {cr}
END

recvac =
WHEN cs : ackChan /* ack for the already sent
cs */
THEN
cs := cs + 1 /* now the next to be sent */
END
/* Simulating non-relaibility of channels,
data/ack may be loss */
; rmvData =
ANY ii, dd WHERE
ii |->dd : dataChan
THEN
dataChan := dataChan - { ii|->dd }
END
;
rmvAck =
ANY ii WHERE
ii : ackChan
THEN
ackChan := ackChan - {ii}
END
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Case study: embedded system construction

Embedded System Construction

input variables output variables

control_events family

internal variables

monitoring_events family

sense_events family

state variables

. . . . . .

reaction_events family
Physical devices

global system = software+hardware

software part

read

write

write

read

read

read

write

operator

Figure: Final global view
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Case study: embedded system construction

Stepwise construction of ES: variable family

input variables output variables

internal variables

state variables

. . . . . .

Physical devices

global system = software+hardware

software part

Figure: The variables of the model
J. Christian Attiogbé (Tlemcen, October 2017)Specification and verification of embedded systems 52 / 76



Case study: embedded system construction

Stepwise construction: input variables

input variables output variables

internal variables

sense_events family

state variables

. . . . . .

Physical devices

global system = software+hardware

software part

Figure: Reading the input variables
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Case study: embedded system construction

Stepwise construction: monitoring/internal variables

input variables output variables

internal variables

monitoring_events family

sense_events family

state variables

. . . . . .

Physical devices

global system = software+hardware

software part

read

write

read

write

Figure: Monitoring inputs
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Case study: embedded system construction

Stepwise construction: output variables

input variables output variables

control_events family

internal variables

monitoring_events family

sense_events family

state variables

. . . . . .

Physical devices

global system = software+hardware

software part

read

write

write

read

read

read

write

Figure: Controling outputs
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Case study: embedded system construction

Stepwise construction: physical control simulation

input variables output variables

control_events family

internal variables

monitoring_events family

sense_events family

state variables

. . . . . .

reaction_events family
Physical devices

global system = software+hardware

software part

read

write

write

read

read

read

write

Figure: The final step: abstract model
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Case study: embedded system construction

Decomposition: software and hardware parts

input variables output variables

control_events family

internal variables

monitoring_events family

sense_events family

state variables

. . . . . .

reaction_events family

Physical devices

Hardware part

Software part

read

write

write

read

read

read

write

Figure: The final step: abstract model
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Application

Application to the Light LGS study

Implementation of the approach with the light LGS
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Application

The system is composed of:

a landing gear.

The landing gear motion is performed by a set of actuating cylinders. The cylinder
position corresponds to the landing gear position. The landing system has the
following actuating cylinders:

for the landing gear, a cylinder retracts and extends the landing gear.

Hydraulic power is provided to the cylinders by a set of electro-valves:

One general electro-valve which supplies the specific electro-valves with
hydraulic power from the aircraft hydraulic circuit.

One electro-valve that sets pressure on the portion of the hydraulic circuit related
to landing gear extending.

One electro-valve that sets pressure on.
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Application

Each electro-valve is activated by an electrical order coming from the digital part. In
the specific case of the general electro-valve, this electrical order goes through an
analogical switch in order to prevent abnormal behavior of the digital part (e.g.
abnormal activation of the general electro-valve).
A set of discrete sensors inform the digital part about the state of the equipments:

gear is locked / not locked in the extended position.

gear is locked / not locked in the retracted position.

The hydraulic circuit (after the general electro-valve) is pressurized / not
pressurized.

Each sensor delivers discrete values describing the situation (’gear locked in retrated’,
’gear locked in extended’, ...
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Application

The digital part is made of one computing module, which is in charge of controling the
gear, of detecting anomalies, and of informing the pilot about the global state of the
system and anomalies (if any). The digital part is part of a retroaction loop with the
physical system, and produces commands for the distribution elements of the
hydraulic system with respect to the sensors values and the pilot orders.
The inputs received by the digital part are:

handle : {up, down}. From the pilot. It characterises the position of the handle.

The inputs from the controlled environment are:

gear extended ∈ {true, false}. It is true if the gear is locked in the extended position
and false in the other case.

gear retracted ∈ {true, false}. It is true if the corresponding gear is locked in the
retracted position and false in the other case.

circuitpressurized ∈ {true, false} is returned by a pressure sensor on the hydraulic
circuit between the general electro-valve and the maneuvering electro-valve. It is
true if and only if the pressure is high in this part of the hydraulic circuit.
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Application

From these inputs, the module computes 3 electrical orders for the electro-valves
(EV):

general EV ∈ {true, false}

retract EV ∈ {true, false}

extend EV ∈ {true, false}

Similarly the module produces global boolean state variables to the cockpit:

gears locked down ∈ {true, false}

gears maneuvering ∈ {true, false}

anomaly ∈ {true, false}
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Application

These outputs are synthesized by the module from sensors data and from the
situation awareness.
If gears locked down is sent to the pilot interface with the value true, then the green
light “gears are locked down” is on.
If gears maneuvering is sent to the pilot interface with the value true, then the orange
light “gears maneuvering” is on.
If anomaly is sent to the pilot interface with the value true, then the red light “landing
gear system failure” is on.
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Application

The aim of the software part of the system is twofold:
1 to control the hydraulic devices according to the pilot orders and to the

mechanical devices positions;
2 to monitor the system and to inform the pilot in case of anomaly.

When the command line is working (in normal mode), the landing system reacts to the
pilot orders by actioning or inhibiting the electro-valves of the appropriate cylinders.
Anomalies are caused by failures on hydraulic equipment, electrical components, or
computing modules. ...
An anomaly is detected each time a sensor is definitely considered as invalid.
If the hydraulic circuit is still pressurized 10 seconds after the general electro-valve
has been stopped, then an anomaly is detected in the hydraulic circuit.
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Application

Application to the Light LGS study

input: GEBL, GENB, GRBL, GRNB outpu: genEV, extEV, retEV

control_events family

int var: gearState, hdlState

monitoring_events family

sense_events family

state: GearLk, GearMan, Anomaly

. . . . . .

reaction_events family
Gear, PressCircuit

global system = software+hardware

software part
pilot handle

Figure: Abstract model of the Light LGS
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Case study: readers-writers

Case Study : Multiprocess specification
(Readers/writers)

Description
Multiple processes: readers, writers
Shared resources between the processes
Several readers may read the resource
Only one writer at a time

Property:
Mutual exclusion between readers and writers
Improvement:
no starvation→ as a new property
(using refinements)
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Case study: readers-writers

Multiprocess specification

MACHINE
readWrite2
SETS
WRITER /* set of writer processes */
; READER /* set of reader processes */

VARIABLES
writers /* current writers */
, activeWriter
, waitingWriters
, readers /* current readers */
, waitingReaders
, activeReaders /* we may have svrl readers simultan. */

J. Christian Attiogbé (Tlemcen, October 2017)Specification and verification of embedded systems 67 / 76

Case study: readers-writers

Multiprocess specification

INVARIANT
writers <: WRITER
& activeWriter <: WRITER & card(activeWriter) <= 1
& waitingWriters <: WRITER
& writers /\ waitingWriters = {}
& activeWriter /\ waitingWriters = {}
& activeWriter /\ writers = {}
/* merge */
& readers <: READER
& waitingReaders <: READER
& activeReaders <: READER & card(activeReaders) >= 0
& readers /\ waitingReaders = {}
& activeReaders /\ waitingReaders = {}
& activeReaders /\ readers = {}
/*�����safety properties �����*/
& not((card(activeWriter) = 1)&(card(activeReaders) >= 1))
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Case study: readers-writers

Multiprocess specification

INITIALISATION
activeWriter := {}
|| waitingWriters := {}
|| activeReaders := {}

|| readers :: POW(READER)
|| writers :: POW(WRITER)
|| waitingReaders := {}
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Case study: readers-writers

Multiprocess specification

want2write = /* observed when a process wants to write */
ANY ww WHERE
ww : writers
& ww /: waitingWriters
& ww /: activeWriter
THEN
waitingWriters := waitingWriters \/ {ww}
|| writers := writers - {ww}
END
;
writing =
ANY ww WHERE
ww : waitingWriters
& activeReaders = {} & activeWriter = {}
THEN
activeWriter := {ww}
|| waitingWriters := waitingWriters - {ww}
END
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Case study: readers-writers

Multiprocess specification

endWriting =
ANY ww WHERE
ww : activeWriter
THEN
writers := writers\/ {ww}
|| activeWriter := {}
END
;
want2read =
ANY rr WHERE
rr : readers
& rr /: waitingReaders
& rr /: activeReaders
THEN
waitingReaders := waitingReaders \/ {rr}
|| readers := readers - {rr}
END
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Case study: readers-writers

Multiprocess specification

reading =
ANY rr WHERE
rr : waitingReaders
& activeWriter = {}
THEN
activeReaders := activeReaders\/ {rr}
|| waitingReaders := waitingReaders - {rr}
END
;
endReading =
/* one of the active readers finishes and leaves
the competition to the shared resources */
ANY rr WHERE
rr : activeReaders
THEN
activeReaders := activeReaders - {rr}
|| readers := readers \/ {rr}
END
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Case study: readers-writers

Multiprocess specification

newWriter = /* a new Writer */
ANY ww
WHERE ww : WRITER
& ww /: (writers \/ waitingWriters \/ activeWriter)
THEN
writers := writers \/ {ww}
END
; leaveWriters = /* a writer leaves the group */
ANY ww
WHERE
ww : writers
THEN
writers := writers - {ww}
END
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Case study: readers-writers

Multiprocess specification

newReader = /* a new reader joins the readers */
ANY rr WHERE
rr : READER
& rr /: (readers\/waitingReaders \/activeReaders)
THEN
readers := readers \/ {rr}
END
; leaveReader =
ANY rr WHERE
rr : readers & card(readers) > 1
THEN
readers := readers - {rr}
END

J. Christian Attiogbé (Tlemcen, October 2017)Specification and verification of embedded systems 74 / 76



Case study: readers-writers

Conclusion

Initiation rapide à B et Event-B
Découverte d’une méthode de construction systématique des
systèmes embarqués
Reste à pratiquer, pratiquer, pratiquer
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Case study: readers-writers

Event-B: Some References

- Modelling in Event-B: System and Software Engineering,
J-R. Abrial, Cambridge, 2010

- Modelling and proof of a Tree-structured File System. Damchoom,
Kriangsak and Butler, Michael and Abrial, Jean-Raymond, 2008.

- Applying Event and Machine Decomposition to a Flash-Based Filestore in
Event-B. Damchoom, Kriangsak and Butler, Michael; 2009.

- Faultless Systems: Yes We Can!, Jean-Raymond Abrial, 2009

- Modelling an Aircraft Landing System in Event-B,
Dominique Méry, Neeraj Kumar Singh, 2014

- Closed-Loop Modelling of Cardiac Pacemaker and Heart , Dominique Méry,
Neeraj Kumar Singh, 2012
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